Articles producció científica> Enginyeria Electrònica, Elèctrica i Automàtica

Differences in the Stool Metabolome between Vegans and Omnivores: Analyzing the NIST Stool Reference Material

  • Datos identificativos

    Identificador: imarina:9329052
    Autores:
    Cumeras, RShen, TValdiviez, LTippins, ZHaffner, BFiehn, O
    Resumen:
    To gain confidence in results of omic-data acquisitions, methods must be benchmarked using validated quality control materials. We report data combining both untargeted and targeted metabolomics assays for the analysis of four new human fecal reference materials developed by the U.S. National Institute of Standards and Technologies (NIST) for metagenomics and metabolomics measurements. These reference grade test materials (RGTM) were established by NIST based on two different diets and two different samples treatments, as follows: firstly, homogenized fecal matter from subjects eating vegan diets, stored and submitted in either lyophilized (RGTM 10162) or aqueous form (RGTM 10171); secondly, homogenized fecal matter from subjects eating omnivore diets, stored and submitted in either lyophilized (RGTM 10172) or aqueous form (RGTM 10173). We used four untargeted metabolomics assays (lipidomics, primary metabolites, biogenic amines and polyphenols) and one targeted assay on bile acids. A total of 3563 compounds were annotated by mass spectrometry, including 353 compounds that were annotated in more than one assay. Almost half of all compounds were annotated using hydrophilic interaction chromatography/accurate mass spectrometry, followed by the lipidomics and the polyphenol assays. In total, 910 metabolites were found in at least 4-fold different levels in fecal matter from vegans versus omnivores, specifically for peptides, amino acids and lipids. In comparison, only 251 compounds showed 4-fold differences between lyophilized and aqueous fecal samples, including DG O-34:0 and methionine sulfoxide. A range of diet-specific metabolites were identified to be significantly different between vegans and omnivores, exemplified by citrinin and C17:0-acylcarnitine for omnivores, a
  • Otros:

    Autor según el artículo: Cumeras, R; Shen, T; Valdiviez, L; Tippins, Z; Haffner, B; Fiehn, O
    Departamento: Enginyeria Electrònica, Elèctrica i Automàtica
    Autor/es de la URV: Cumeras Olmeda, Raquel
    Palabras clave: Vegan Tool Stool Reference material Omnivore Metabolomics Mass spectrometry Diet vegan stool omnivore metabolomics mass spectrometry diet
    Resumen: To gain confidence in results of omic-data acquisitions, methods must be benchmarked using validated quality control materials. We report data combining both untargeted and targeted metabolomics assays for the analysis of four new human fecal reference materials developed by the U.S. National Institute of Standards and Technologies (NIST) for metagenomics and metabolomics measurements. These reference grade test materials (RGTM) were established by NIST based on two different diets and two different samples treatments, as follows: firstly, homogenized fecal matter from subjects eating vegan diets, stored and submitted in either lyophilized (RGTM 10162) or aqueous form (RGTM 10171); secondly, homogenized fecal matter from subjects eating omnivore diets, stored and submitted in either lyophilized (RGTM 10172) or aqueous form (RGTM 10173). We used four untargeted metabolomics assays (lipidomics, primary metabolites, biogenic amines and polyphenols) and one targeted assay on bile acids. A total of 3563 compounds were annotated by mass spectrometry, including 353 compounds that were annotated in more than one assay. Almost half of all compounds were annotated using hydrophilic interaction chromatography/accurate mass spectrometry, followed by the lipidomics and the polyphenol assays. In total, 910 metabolites were found in at least 4-fold different levels in fecal matter from vegans versus omnivores, specifically for peptides, amino acids and lipids. In comparison, only 251 compounds showed 4-fold differences between lyophilized and aqueous fecal samples, including DG O-34:0 and methionine sulfoxide. A range of diet-specific metabolites were identified to be significantly different between vegans and omnivores, exemplified by citrinin and C17:0-acylcarnitine for omnivores, and curcumin and lenticin for vegans. Bioactive molecules like acyl alpha-hydroxy-fatty acids (AAHFA) were differentially regulated in vegan versus omnivore fecal materials, highlighting the importance of diet-specific reference materials for dietary biomarker studies.
    Áreas temáticas: Molecular biology Medicina ii Farmacia Endocrinology, diabetes and metabolism Ciências biológicas ii Ciências biológicas i Biotecnología Biochemistry & molecular biology Biochemistry
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: raquel.cumeras@urv.cat
    Identificador del autor: 0000-0003-4663-4247
    Fecha de alta del registro: 2024-08-03
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Enlace a la fuente original: https://www.mdpi.com/2218-1989/13/8/921
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Metabolites. 13 (8):
    Referencia de l'ítem segons les normes APA: Cumeras, R; Shen, T; Valdiviez, L; Tippins, Z; Haffner, B; Fiehn, O (2023). Differences in the Stool Metabolome between Vegans and Omnivores: Analyzing the NIST Stool Reference Material. Metabolites, 13(8), -. DOI: 10.3390/metabo13080921
    DOI del artículo: 10.3390/metabo13080921
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2023
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Biochemistry,Biochemistry & Molecular Biology,Endocrinology, Diabetes and Metabolism,Molecular Biology
    Vegan
    Tool
    Stool
    Reference material
    Omnivore
    Metabolomics
    Mass spectrometry
    Diet
    vegan
    stool
    omnivore
    metabolomics
    mass spectrometry
    diet
    Molecular biology
    Medicina ii
    Farmacia
    Endocrinology, diabetes and metabolism
    Ciências biológicas ii
    Ciências biológicas i
    Biotecnología
    Biochemistry & molecular biology
    Biochemistry
  • Documentos:

  • Cerca a google

    Search to google scholar