Autor según el artículo: Baquer G; Sementé L; Ràfols P; Martín-Saiz L; Bookmeyer C; Fernández JA; Correig X; García-Altares M
Departamento: Enginyeria Electrònica, Elèctrica i Automàtica
Autor/es de la URV: Correig Blanchar, Francesc Xavier / Ràfols Soler, Pere
Palabras clave: Mass spectrometry imaging Maldi Lipids In-source fragmentation In-source decay Computation Cheminformatics Bioinformatics Annotation
Resumen: Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging (MALDI-MSI) spatially resolves the chemical composition of tissues. Lipids are of particular interest, as they influence important biological processes in health and disease. However, the identification of lipids in MALDI-MSI remains a challenge due to the lack of chromatographic separation or untargeted tandem mass spectrometry. Recent studies have proposed the use of MALDI in-source fragmentation to infer structural information and aid identification. Here we present rMSIfragment, an open-source R package that exploits known adducts and fragmentation pathways to confidently annotate lipids in MALDI-MSI. The annotations are ranked using a novel score that demonstrates an area under the curve of 0.7 in ROC analyses using HPLC-MS and Target-Decoy validations. rMSIfragment applies to multiple MALDI-MSI sample types and experimental setups. Finally, we demonstrate that overlooking in-source fragments increases the number of incorrect annotations. Annotation workflows should consider in-source fragmentation tools such as rMSIfragment to increase annotation confidence and reduce the number of false positives.© 2023. Springer Nature Switzerland AG.
Áreas temáticas: Química Physical and theoretical chemistry Library and information sciences Computer science, interdisciplinary applications Computer science, information systems Computer science applications Computer graphics and computer-aided design Ciencias sociales Chemistry, multidisciplinary Biotecnología
Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
Direcció de correo del autor: pere.rafols@urv.cat xavier.correig@urv.cat
Identificador del autor: 0000-0002-9240-4058 0000-0002-6902-3054
Fecha de alta del registro: 2024-08-03
Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
Enlace a la fuente original: https://jcheminf.biomedcentral.com/articles/10.1186/s13321-023-00756-2
URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
Referencia al articulo segun fuente origial: Journal Of Cheminformatics. 15 (1): 80-80
Referencia de l'ítem segons les normes APA: Baquer G; Sementé L; Ràfols P; Martín-Saiz L; Bookmeyer C; Fernández JA; Correig X; García-Altares M (2023). rMSIfragment: improving MALDI-MSI lipidomics through automated in-source fragment annotation. Journal Of Cheminformatics, 15(1), 80-80. DOI: 10.1186/s13321-023-00756-2
DOI del artículo: 10.1186/s13321-023-00756-2
Entidad: Universitat Rovira i Virgili
Año de publicación de la revista: 2023
Tipo de publicación: Journal Publications