Articles producció científica> Enginyeria Electrònica, Elèctrica i Automàtica

Enhanced CO2 Sensing by Oxygen Plasma-Treated Perovskite-Graphene Nanocomposites

  • Datos identificativos

    Identificador: imarina:9362481
    Autores:
    Casanova-Chafer, JuanGarcia-Aboal, RocioLlobet, EduardAtienzar, Pedro
    Resumen:
    Carbon dioxide (CO2) is a major greenhouse gas responsible for global warming and climate change. The development of sensitive CO2 sensors is crucial for environmental and industrial applications. This paper presents a novel CO2 sensor based on perovskite nanocrystals immobilized on graphene and functionalized with oxygen plasma treatment. The impact of this post-treatment method was thoroughly investigated using various characterization techniques, including Raman spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The detection of CO2 at parts per million (ppm) levels demonstrated that the hybrids subjected to 5 min of oxygen plasma treatment exhibited a 3-fold improvement in sensing performance compared to untreated layers. Consequently, the CO2 sensing capability of the oxygen-treated samples showed a limit of detection and limit of quantification of 6.9 and 22.9 ppm, respectively. Furthermore, the influence of ambient moisture on the CO2 sensing performance was also evaluated, revealing a significant effect of oxygen plasma treatment.
  • Otros:

    Autor según el artículo: Casanova-Chafer, Juan; Garcia-Aboal, Rocio; Llobet, Eduard; Atienzar, Pedro
    Departamento: Enginyeria Electrònica, Elèctrica i Automàtica
    Autor/es de la URV: Casanova Chafer, Juan / Llobet Valero, Eduard
    Palabras clave: Titanium Perovskite Oxygen plasma Oxygen Oxides Nanocomposites Graphite Graphene Gas sensors Co2 Co 2 Chemical gas sensor Carbon dioxide Calcium compounds water temperature raman-spectroscopy oxygen plasma graphene defects co2 chemical gas sensor
    Resumen: Carbon dioxide (CO2) is a major greenhouse gas responsible for global warming and climate change. The development of sensitive CO2 sensors is crucial for environmental and industrial applications. This paper presents a novel CO2 sensor based on perovskite nanocrystals immobilized on graphene and functionalized with oxygen plasma treatment. The impact of this post-treatment method was thoroughly investigated using various characterization techniques, including Raman spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The detection of CO2 at parts per million (ppm) levels demonstrated that the hybrids subjected to 5 min of oxygen plasma treatment exhibited a 3-fold improvement in sensing performance compared to untreated layers. Consequently, the CO2 sensing capability of the oxygen-treated samples showed a limit of detection and limit of quantification of 6.9 and 22.9 ppm, respectively. Furthermore, the influence of ambient moisture on the CO2 sensing performance was also evaluated, revealing a significant effect of oxygen plasma treatment.
    Áreas temáticas: Process chemistry and technology Nanoscience & nanotechnology Instrumentation Fluid flow and transfer processes Engenharias iii Chemistry, multidisciplinary Chemistry, analytical Bioengineering
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: juan.casanova@urv.cat eduard.llobet@urv.cat
    Identificador del autor: 0000-0001-6164-4342
    Fecha de alta del registro: 2024-10-12
    Versión del articulo depositado: info:eu-repo/semantics/submittedVersion
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Acs Sensors. 9 (2): 830-839
    Referencia de l'ítem segons les normes APA: Casanova-Chafer, Juan; Garcia-Aboal, Rocio; Llobet, Eduard; Atienzar, Pedro (2024). Enhanced CO2 Sensing by Oxygen Plasma-Treated Perovskite-Graphene Nanocomposites. Acs Sensors, 9(2), 830-839. DOI: 10.1021/acssensors.3c02166
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2024
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Bioengineering,Chemistry, Analytical,Chemistry, Multidisciplinary,Fluid Flow and Transfer Processes,Instrumentation,Nanoscience & Nanotechnology,Process Chemistry and Technology
    Titanium
    Perovskite
    Oxygen plasma
    Oxygen
    Oxides
    Nanocomposites
    Graphite
    Graphene
    Gas sensors
    Co2
    Co 2
    Chemical gas sensor
    Carbon dioxide
    Calcium compounds
    water
    temperature
    raman-spectroscopy
    oxygen plasma
    graphene
    defects
    co2
    chemical gas sensor
    Process chemistry and technology
    Nanoscience & nanotechnology
    Instrumentation
    Fluid flow and transfer processes
    Engenharias iii
    Chemistry, multidisciplinary
    Chemistry, analytical
    Bioengineering
  • Documentos:

  • Cerca a google

    Search to google scholar