Código de projecto 3: 2021PMF-BS-12
Autor según el artículo: Castro-Reigía, D.; Ezenarro, J.; Azkune, M.; Ayesta, I.; Ostra, M.; Amigo, J.M.; García, I.; Ortiz, M.C.
Departamento: Química Analítica i Química Orgànica
Autor/es de la URV: EZENARRO GARATE, JOKIN
Código de proyecto: Grant agreement No. 824769
Palabras clave: Yoghurt Protein Proof of concept Partial least squares regression (plsr) Near-infrared (nir) In-line Fat
Resumen: A system based on near-infrared (NIR) spectroscopy has been developed for the in-line control of the composition of the milk used as raw material for yoghurt production to control the content of protein and fat in the final product, and, therefore, to reduce variability in the production process. Firstly, after selecting the appropriate method for preprocessing NIR data, Partial Least Squares Regression models were built to predict fat and protein content in milk, obtaining good performances. The variance explained of y-block in prediction (R2P) was 0.99 and 0.80, while the Root Mean Square Error of Prediction (RMSEP), was 0.26 and 0.16 for fat and protein, respectively. With those models, it was possible to determine the fat and protein contents in milk in real time, and therefore, the quantity of milk powder and cream added in the manufacturing process of yoghurt could be readjusted. The presented strategy allows the improvement of the homogeneity of the final product, reducing the variability of the nutritional values in more than 70% with respect to the traditional recipe, and also meet the target values according to yoghurt producers for fat and protein content, that is, 10% of fat and 5% of protein.
Acción del programa de financiación 2: Action of the European Union-NextGenerationEU
Áreas temáticas: Zootecnia / recursos pesqueiros Saúde coletiva Química Nutrição Medicina veterinaria Medicina ii Medicina i Materiais Interdisciplinar Geociências Food science & technology Food science Farmacia Engenharias iii Engenharias ii Engenharias i Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Ciência da computação Chemistry, applied Biotecnología Biodiversidade Astronomia / física
Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
Direcció de correo del autor: jokin.ezenarro@urv.cat jokin.ezenarro@urv.cat
Identificador del autor: 0000-0001-9234-7877 0000-0001-9234-7877
Acción del programa de financiació 3: Universitat Rovira i Virgili - Banco Santander
Fecha de alta del registro: 2024-11-16
Programa de financiación 2: INVESTIGO programe
Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
Referencia al articulo segun fuente origial: Journal Of Food Composition And Analysis. 128 106015-
Referencia de l'ítem segons les normes APA: Castro-Reigía, D.; Ezenarro, J.; Azkune, M.; Ayesta, I.; Ostra, M.; Amigo, J.M.; García, I.; Ortiz, M.C. (2024). Yoghurt standardization using real-time NIR prediction of milk fat and protein content. Journal Of Food Composition And Analysis, 128(), 106015-. DOI: 10.1016/j.jfca.2024.106015
Programa de financiación 3: Contratos de personal investigador predoctoral en formación
Entidad: Universitat Rovira i Virgili
Año de publicación de la revista: 2024
Acción del progama de financiación: Action of the European Union’s Horizon 2020 research and innovation programme
Tipo de publicación: Journal Publications