Autor según el artículo: Sabadell-Rendón, A; Kazmierczak, K; Morandi, S; Euzenat, F; Curulla-Ferré, D; López, N
Departamento: Química Física i Inorgànica
Autor/es de la URV: Lopez Alonso, Nuria / Morandi, Santiago / Sabadell Rendón, Albert
Palabras clave: Mechanism Mass-transfer Kinetics Fixed-bed reactors Chemistry Cfd
Resumen: Multiscale techniques integrating detailed atomistic information on materials and reactions to predict the performance of heterogeneous catalytic full-scale reactors have been suggested but lack seamless implementation. The largest challenges in the multiscale modeling of reactors can be grouped into two main categories: catalytic complexity and the difference between time and length scales of chemical and transport phenomena. Here we introduce the Automated MUltiscale Simulation Environment AMUSE, a workflow that starts from Density Functional Theory (DFT) data, automates the analysis of the reaction networks through graph theory, prepares it for microkinetic modeling, and subsequently integrates the results into a standard open-source Computational Fluid Dynamics (CFD) code. We demonstrate the capabilities of AMUSE by applying it to the unimolecular iso-propanol dehydrogenation reaction and then, increasing the complexity, to the pre-commercial Pd/In2O3 catalyst employed for the CO2 hydrogenation to methanol. The results show that AMUSE allows the computational investigation of heterogeneous catalytic reactions in a comprehensive way, providing essential information for catalyst design from the atomistic to the reactor scale level. AMUSE is a multiscale framework integrating detailed atomistic information on materials and reactions to predict the performance of heterogeneous catalytic full-scale reactors.
Áreas temáticas: Computer science, interdisciplinary applications Chemistry, multidisciplinary Chemistry (miscellaneous)
Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
Direcció de correo del autor: nuria.lopez@urv.cat santiago.morandi@estudiants.urv.cat albert.sabadell@estudiants.urv.cat
Fecha de alta del registro: 2024-08-03
Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
Referencia al articulo segun fuente origial: Digital Discovery. 2 (6): 1721-1732
Referencia de l'ítem segons les normes APA: Sabadell-Rendón, A; Kazmierczak, K; Morandi, S; Euzenat, F; Curulla-Ferré, D; López, N (2023). Automated MUltiscale simulation environment. Digital Discovery, 2(6), 1721-1732. DOI: 10.1039/d3dd00163f
Entidad: Universitat Rovira i Virgili
Año de publicación de la revista: 2023
Tipo de publicación: Journal Publications