Articles producció científica> Enginyeria Electrònica, Elèctrica i Automàtica

Reversible vis-NIR electrochromic/electrofluorochromic switching in dual-functional devices modulated by different benzothiadiazole-arylamine anodic components

  • Datos identificativos

    Identificador: imarina:9366531
    Autores:
    Corrente, GAGonzález, DAAktas, ECapodilupo, ALRuighi, FAccorsi, GImbardelli, DRodriguez-Seco, CMartinez-Ferrero, EPalomares, EBeneduci, A
    Resumen:
    Redox active materials, whose optical emission and absorption spectra are both electrically switchable, are said to be dual functional electrochromic and electrofluorochromic materials. They are intriguing for a wide range of applications, e.g., displays, smart-windows, sensing, information storage, and encryption/anticounterfeiting devices. Herein, we investigated the performance of benzothiadiazole-arylamine compounds serving as either anodic components or electroactive fluorophores, in dual functional electrochromic/electrofluorochromic solid state devices, fabricated as all-in-one ITO/gel/ITO sandwiches. We systematically investigated the electrochromic and electrofluorochromic responses of the devices, by varying the anode among a set of structurally different benzothiadiazole-arylamines and using the ethyl viologen as a cathodic component. All the devices show an interesting vis-NIR electrochromism with a pink/orange to deep dark color switching, arising from the superposition of the electrochromic bands of the viologen and arylamine, with contrasts up to 36%/75% in the NIR/vis ranges and switching times from fractions of a second up to several seconds. Moreover, they show a panchromatic fluorescence from about 450 nm up to 850 nm, due to the intramolecular charge transfer character of the emission typical of these arylamine-benzothiadiazole-arylamine compounds with donor-acceptor-donor architecture. Notably, the relatively strong fluorescence of the devices (fluorescence quantum yields up to 38%) due to the aggregation induced emission (AIE) of the fluorophores in the gel (fluorescence enhancement of up to 63 times with respect to the solution phase with comparable polarity) undergoes a voltage-dependent quenching, with electrofluorochromic contrast ratios of up
  • Otros:

    Autor según el artículo: Corrente, GA; González, DA; Aktas, E; Capodilupo, AL; Ruighi, F; Accorsi, G; Imbardelli, D; Rodriguez-Seco, C; Martinez-Ferrero, E; Palomares, E; Beneduci, A
    Departamento: Enginyeria Electrònica, Elèctrica i Automàtica
    Autor/es de la URV: Aktas, Ece / González Ruiz, Dora Alejandra
    Palabras clave: Triphenylamine Systems Quantum yields Polyamides Molecules Mixed-valence compounds Luminescence Fluorescence Contrast Coloration
    Resumen: Redox active materials, whose optical emission and absorption spectra are both electrically switchable, are said to be dual functional electrochromic and electrofluorochromic materials. They are intriguing for a wide range of applications, e.g., displays, smart-windows, sensing, information storage, and encryption/anticounterfeiting devices. Herein, we investigated the performance of benzothiadiazole-arylamine compounds serving as either anodic components or electroactive fluorophores, in dual functional electrochromic/electrofluorochromic solid state devices, fabricated as all-in-one ITO/gel/ITO sandwiches. We systematically investigated the electrochromic and electrofluorochromic responses of the devices, by varying the anode among a set of structurally different benzothiadiazole-arylamines and using the ethyl viologen as a cathodic component. All the devices show an interesting vis-NIR electrochromism with a pink/orange to deep dark color switching, arising from the superposition of the electrochromic bands of the viologen and arylamine, with contrasts up to 36%/75% in the NIR/vis ranges and switching times from fractions of a second up to several seconds. Moreover, they show a panchromatic fluorescence from about 450 nm up to 850 nm, due to the intramolecular charge transfer character of the emission typical of these arylamine-benzothiadiazole-arylamine compounds with donor-acceptor-donor architecture. Notably, the relatively strong fluorescence of the devices (fluorescence quantum yields up to 38%) due to the aggregation induced emission (AIE) of the fluorophores in the gel (fluorescence enhancement of up to 63 times with respect to the solution phase with comparable polarity) undergoes a voltage-dependent quenching, with electrofluorochromic contrast ratios of up to 9, and a shift of the emission from NIR/red to yellow. Such an electrofluorochromic response is due to an uneven fluorescence quenching across the whole emission band, the twisted charge transfer states being majorly quenched at lower energy (red-NIR range). Interestingly, the voltage threshold for achieving the above electrochromic and electrofluorochromic responses increases with the first oxidation potential of the anodic component. Mechanistic insights provided by electrochemical impedance spectroscopy clearly show that the above threshold corresponds to the onset for electron injection/ejection at the cathode and anode, respectively, and depends on the difference between the viologen reduction potential and the oxidation potential of the arylamine. Finally, the devices show high stabilities with more than 2000 life cycles. Herein we show all-in-one electrochromic and electrofluorochromic devices where the ethyl viologen cathode is coupled to different arylamine-BT-arylamine anodes, by which modulation of light absorption and emission in the vis-NIR range is achieved.
    Áreas temáticas: Química Physics, applied Odontología Materials science, multidisciplinary Materials chemistry Materiais Interdisciplinar General chemistry Engenharias iii Ciências ambientais Ciências agrárias i Chemistry (miscellaneous) Chemistry (all) Biotecnología Astronomia / física
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: doraalejandra.gonzalez@estudiants.urv.cat
    Fecha de alta del registro: 2024-08-03
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Enlace a la fuente original: https://pubs.rsc.org/en/content/articlehtml/2023/tc/d3tc03577h
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Journal Of Materials Chemistry c. 11 (48): 17115-17127
    Referencia de l'ítem segons les normes APA: Corrente, GA; González, DA; Aktas, E; Capodilupo, AL; Ruighi, F; Accorsi, G; Imbardelli, D; Rodriguez-Seco, C; Martinez-Ferrero, E; Palomares, E; Bene (2023). Reversible vis-NIR electrochromic/electrofluorochromic switching in dual-functional devices modulated by different benzothiadiazole-arylamine anodic components. Journal Of Materials Chemistry c, 11(48), 17115-17127. DOI: 10.1039/d3tc03577h
    DOI del artículo: 10.1039/d3tc03577h
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2023
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Chemistry (Miscellaneous),Materials Chemistry,Materials Science, Multidisciplinary,Physics, Applied
    Triphenylamine
    Systems
    Quantum yields
    Polyamides
    Molecules
    Mixed-valence compounds
    Luminescence
    Fluorescence
    Contrast
    Coloration
    Química
    Physics, applied
    Odontología
    Materials science, multidisciplinary
    Materials chemistry
    Materiais
    Interdisciplinar
    General chemistry
    Engenharias iii
    Ciências ambientais
    Ciências agrárias i
    Chemistry (miscellaneous)
    Chemistry (all)
    Biotecnología
    Astronomia / física
  • Documentos:

  • Cerca a google

    Search to google scholar