Articles producció científica> Enginyeria Electrònica, Elèctrica i Automàtica

Device Performance of Emerging Photovoltaic Materials (Version 4)

  • Datos identificativos

    Identificador: imarina:9366625
    Autores:
    Almora, OCabrera, CIErten-Ela, SForberich, KFukuda, KGuo, FHauch, JHo-Baillie, AWYJacobsson, TJJanssen, RAJKirchartz, TLoi, MAMathew, XMitzi, DBNazeeruddin, MKPaetzold, UWRand, BPRau, USomeya, TUnger, EVaillant-Roca, LBrabec, CJ
    Resumen:
    Following the 3rd release of the Emerging PV reports, the best achievements in the performance of emerging photovoltaic (e-PV) devices in diverse e-PV research subjects are summarized, as reported in peer-reviewed articles in academic journals since August 2022. Updated graphs, tables, and analyses are provided with several performance parameters, such as power conversion efficiency, open-circuit voltage, short-circuit current density, fill factor, light utilization efficiency, and stability test energy yield. These parameters are presented as a function of the photovoltaic bandgap energy and the average visible transmittance for each technology and application, and are put into perspective using, for example, the detailed balance efficiency limit. The 4th installment of the Emerging PV reports discusses the PV emergence classification with respect to the PV technology generations and PV research waves and highlights the latest device performance progress in multijunction and flexible photovoltaics. Additionally, Dale-Scarpulla's plots of efficiency-effort in terms of cumulative academic publication count are also introduced. The power conversion efficiency (PCE) as a function of the photovoltaic bandgap energy (Eg) is shown as summarized by the yearly emerging PV reports (e-PVr) published in Advance Energy Materials over the last 4 years, as well as in the website and database.image
  • Otros:

    Autor según el artículo: Almora, O; Cabrera, CI; Erten-Ela, S; Forberich, K; Fukuda, K; Guo, F; Hauch, J; Ho-Baillie, AWY; Jacobsson, TJ; Janssen, RAJ; Kirchartz, T; Loi, MA; Mathew, X; Mitzi, DB; Nazeeruddin, MK; Paetzold, UW; Rand, BP; Rau, U; Someya, T; Unger, E; Vaillant-Roca, L; Brabec, CJ
    Departamento: Enginyeria Electrònica, Elèctrica i Automàtica
    Autor/es de la URV: Almora Rodríguez, Osbel
    Palabras clave: Transparent and semitransparent solar cells Recombination Photovoltaic device operational stability Perovskite solar-cells Passivation Oxidation Multijunction solar cells Flexible photovoltaics Efficient Detailed balance limit
    Resumen: Following the 3rd release of the Emerging PV reports, the best achievements in the performance of emerging photovoltaic (e-PV) devices in diverse e-PV research subjects are summarized, as reported in peer-reviewed articles in academic journals since August 2022. Updated graphs, tables, and analyses are provided with several performance parameters, such as power conversion efficiency, open-circuit voltage, short-circuit current density, fill factor, light utilization efficiency, and stability test energy yield. These parameters are presented as a function of the photovoltaic bandgap energy and the average visible transmittance for each technology and application, and are put into perspective using, for example, the detailed balance efficiency limit. The 4th installment of the Emerging PV reports discusses the PV emergence classification with respect to the PV technology generations and PV research waves and highlights the latest device performance progress in multijunction and flexible photovoltaics. Additionally, Dale-Scarpulla's plots of efficiency-effort in terms of cumulative academic publication count are also introduced. The power conversion efficiency (PCE) as a function of the photovoltaic bandgap energy (Eg) is shown as summarized by the yearly emerging PV reports (e-PVr) published in Advance Energy Materials over the last 4 years, as well as in the website and database.image
    Áreas temáticas: Renewable energy, sustainability and the environment Physics, condensed matter Physics, applied Materials science, multidisciplinary Materials science (miscellaneous) Materials science (all) General materials science Energy & fuels Chemistry, physical
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: osbel.almora@urv.cat
    Identificador del autor: 0000-0002-2523-0203
    Fecha de alta del registro: 2024-08-03
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Advanced Energy Materials. 14 (4):
    Referencia de l'ítem segons les normes APA: Almora, O; Cabrera, CI; Erten-Ela, S; Forberich, K; Fukuda, K; Guo, F; Hauch, J; Ho-Baillie, AWY; Jacobsson, TJ; Janssen, RAJ; Kirchartz, T; Loi, MA; (2024). Device Performance of Emerging Photovoltaic Materials (Version 4). Advanced Energy Materials, 14(4), -. DOI: 10.1002/aenm.202303173
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2024
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Chemistry, Physical,Energy & Fuels,Materials Science (Miscellaneous),Materials Science, Multidisciplinary,Physics, Applied,Physics, Condensed Matter,Renewable Energy, Sustainability and the Environment
    Transparent and semitransparent solar cells
    Recombination
    Photovoltaic device operational stability
    Perovskite solar-cells
    Passivation
    Oxidation
    Multijunction solar cells
    Flexible photovoltaics
    Efficient
    Detailed balance limit
    Renewable energy, sustainability and the environment
    Physics, condensed matter
    Physics, applied
    Materials science, multidisciplinary
    Materials science (miscellaneous)
    Materials science (all)
    General materials science
    Energy & fuels
    Chemistry, physical
  • Documentos:

  • Cerca a google

    Search to google scholar