Articles producció científica> Enginyeria Informàtica i Matemàtiques

Asymptotic expansion of the Dulac map and time for unfoldings of hyperbolic saddles: Coefficient properties

  • Datos identificativos

    Identificador: imarina:9372460
    Autores:
    Marín, D.Villadelprat, J
    Resumen:
    We consider a family of planar vector fields having a hyperbolic saddle and we study the Dulac map and the Dulac time from a transverse section at the stable separatrix to a transverse section at the unstable separatrix, both at arbitrary distance from the saddle. Since the hyperbolicity ratio λ of the saddle plays an important role, we treat it as an independent parameter, so that , where W is an open subset of . For each and , the functions and have an asymptotic expansion at and with the remainder being uniformly L-flat with respect to the parameters. The principal part of both asymptotic expansions is given in a monomial scale containing a deformation of the logarithm, the so-called Ecalle-Roussarie compensator. In this paper we are interested in the coefficients of these monomials, which are functions depending on that can be shown to be in their respective domains and “universally” defined, meaning that their existence is stablished before fixing the flatness L and the unfolded parameter . Each coefficient has its own domain and it is of the form , where D a discrete set of rational numbers at which a resonance of the hyperbolicity ratio λ occurs. In our main result, Theorem A, we provide explicit expressions for some of these coefficients and to this end a fundamental tool is the employment of a sort of incomplete Mellin transform. With regard to these coefficients we also prove that they have poles of order at most two at and we give the corresponding residue, that plays an important role when compensators appear in the principal part. Furthermore we prove a result, Corollary B, showing that in the analytic setting each coefficient given in Theorem A is meromorphic on and has only poles, of order at most two, along .
  • Otros:

    Autor según el artículo: Marín, D.; Villadelprat, J
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Departamento: Enginyeria Informàtica i Matemàtiques
    Programa de financiación: Herramientas para el análisis de diagramas de bifurcación en sistemas dinámicos
    Código de proyecto: PID2020-118281GB-C33
    Acrónimo: ATBiD
    Resumen: We consider a family of planar vector fields having a hyperbolic saddle and we study the Dulac map and the Dulac time from a transverse section at the stable separatrix to a transverse section at the unstable separatrix, both at arbitrary distance from the saddle. Since the hyperbolicity ratio λ of the saddle plays an important role, we treat it as an independent parameter, so that , where W is an open subset of . For each and , the functions and have an asymptotic expansion at and with the remainder being uniformly L-flat with respect to the parameters. The principal part of both asymptotic expansions is given in a monomial scale containing a deformation of the logarithm, the so-called Ecalle-Roussarie compensator. In this paper we are interested in the coefficients of these monomials, which are functions depending on that can be shown to be in their respective domains and “universally” defined, meaning that their existence is stablished before fixing the flatness L and the unfolded parameter . Each coefficient has its own domain and it is of the form , where D a discrete set of rational numbers at which a resonance of the hyperbolicity ratio λ occurs. In our main result, Theorem A, we provide explicit expressions for some of these coefficients and to this end a fundamental tool is the employment of a sort of incomplete Mellin transform. With regard to these coefficients we also prove that they have poles of order at most two at and we give the corresponding residue, that plays an important role when compensators appear in the principal part. Furthermore we prove a result, Corollary B, showing that in the analytic setting each coefficient given in Theorem A is meromorphic on and has only poles, of order at most two, along .
    Año de publicación de la revista: 2024
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: jordi.villadelprat@urv.cat
    Acción del progama de financiación: Proyectos I+D Generación de Conocimiento
    Tipo de publicación: info:eu-repo/semantics/article
  • Palabras clave:

    Dulac map, Dulac time, Asymptotic expansion, Incomplete Mellin transform
  • Documentos:

  • Cerca a google

    Search to google scholar