Autor según el artículo: Alvarado-Pérez JC; Garcia MA; Puig D
Departamento: Enginyeria Informàtica i Matemàtiques
Autor/es de la URV: Puig Valls, Domènec Savi
Palabras clave: Cluster inductions Dimensionality reductions Ensemble learning Manifold approximations Online processing Topological preservations Unsupervised deep networks
Resumen: Dimension reduction aims to project a high-dimensional dataset into a low-dimensional space. It tries to preserve the topological relationships among the original data points and/or induce clusters. NetDRm, an online dimensionality reduction method based on neural ensemble learning that integrates different dimension reduction methods in a synergistic way, is introduced. NetDRm is designed for datasets of multidimensional points that can be either structured (e.g., images) or unstructured (e.g., point clouds, tabular data). It starts by training a collection of deep residual encoders that learn the embeddings induced by multiple dimension reduction methods applied to the input dataset. Subsequently, a dense neural network integrates the generated encoders by emphasizing topological preservation or cluster induction. Experiments conducted on widely used multidimensional datasets (point-cloud manifolds, image datasets, tabular record datasets) show that the proposed method yields better results in terms of topological preservation ((Formula presented.) curves), cluster induction (V measure), and classification accuracy than the most relevant dimension reduction methods.
Áreas temáticas: Artificial intelligence Automation & control systems Computer science, artificial intelligence Computer vision and pattern recognition Control and systems engineering Electrical and electronic engineering Human-computer interaction Materials science (miscellaneous) Mechanical engineering Robotics
Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
Direcció de correo del autor: domenec.puig@urv.cat
Identificador del autor: 0000-0002-0562-4205
Fecha de alta del registro: 2024-10-12
Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
Enlace a la fuente original: https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400178
Referencia al articulo segun fuente origial: Advanced Intelligent Systems.
Referencia de l'ítem segons les normes APA: Alvarado-Pérez JC; Garcia MA; Puig D (2024). Dimension Reduction of Multidimensional Structured and Unstructured Datasets through Ensemble Learning of Neural Embeddings. Advanced Intelligent Systems, (), -. DOI: 10.1002/aisy.202400178
URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
DOI del artículo: 10.1002/aisy.202400178
Entidad: Universitat Rovira i Virgili
Año de publicación de la revista: 2024
Tipo de publicación: Journal Publications