Autor según el artículo: Mendez-Sanchez, C; Güell, MC; Ferrando, M; Jimenez-Flores, R; Castellvi, SD; Rodriguez-Saona, L; Domingo, JC
Departamento: Enginyeria Química
Autor/es de la URV: De Lamo Castellvi, Silvia / Ferrando Cogollos, Maria Montserrat / Güell Saperas, Maria Carmen / Méndez Sánchez, Carmen
Palabras clave: Tenebrio molitor Oils Nir Near-infrared spectroscopy Near-infrared spectroscop Mir Mid-infrared spectroscopy Lipids L Infrared-spectroscopy Fat content Alphitobius diaperinus Acids
Resumen: The present study describes a new approach to predict the level of crude fat present in commercial edible Tenebrio molitor and Alphitobius diaperinus powders partially defatted using mid and near infrared spectral data combined with multivariate analysis. Insect powders were partially defatted by using three organic solvents and CO2 in supercritical conditions obtaining samples with fat content ranging from 0 to 28.7% (n = 46). Lipid content and fatty acid profile were determined by using Soxhlet and fatty acid methyl esters (FAME) methods, respectively. Spectral data was acquired using a two handheld FT-NIR devices (1350-2550 nm) and two portable FT-MIR equipment (4000-630 cm- 1) equipped with ATR crystals. Partial least squares regression (PLSR) model was used to easily predict insect fat content. Ethanol had lipid extraction yields significantly lower, specially for T. molitor. FA composition was affected by the solvent used. PLSR results exhibited good linearity, predicting crude fat content with strong correlation (Rcv >= 0.9) and low standard error of cross-validation (SECV = 1.06-3.22%). Nonetheless, the FT-NIR devices tested, showed higher performance for fat content prediction in insect powders, reaching values of 0.99 in coefficient of correlation (RP) and 1.05% in standard error in prediction (SEP).
Áreas temáticas: Zootecnia / recursos pesqueiros Saúde coletiva Química Odontología Nutrição Medicina veterinaria Medicina ii Medicina i Materiais Interdisciplinar Geociências Food science & technology Food science Farmacia Engenharias iii Engenharias ii Engenharias i Educação física Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Biotecnología Biodiversidade Astronomia / física Administração pública e de empresas, ciências contábeis e turismo
Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
Direcció de correo del autor: montse.ferrando@urv.cat carme.guell@urv.cat silvia.delamo@urv.cat carmen.mendez@urv.cat
Identificador del autor: 0000-0002-2076-4222 0000-0002-4566-5132 0000-0002-5261-6806
Fecha de alta del registro: 2024-09-14
Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
Referencia al articulo segun fuente origial: Lwt-Food Science And Technology. 207 116652-
Referencia de l'ítem segons les normes APA: Mendez-Sanchez, C; Güell, MC; Ferrando, M; Jimenez-Flores, R; Castellvi, SD; Rodriguez-Saona, L; Domingo, JC (2024). Prediction of fat content in edible insect powders using handheld FT-IR spectroscopic devices. Lwt-Food Science And Technology, 207(), 116652-. DOI: 10.1016/j.lwt.2024.116652
URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
Entidad: Universitat Rovira i Virgili
Año de publicación de la revista: 2024
Tipo de publicación: Journal Publications