Articles producció científica> Enginyeria Informàtica i Matemàtiques

Predicting Personalized Quality of Life of an Intellectually Disabled Person Utilizing Machine Learning

  • Datos identificativos

    Identificador: imarina:9380776
    Autores:
    Kumar Yadav, GauravMoreno Vidales, BenignoDuenas, SaraAbdel-Nasser, MohamedRashwan, Hatem APuig, DomenecNandi, G C
    Resumen:
    This work aims to enhance dependent persons' quality of life (QOL) by examining various aspects of their lives and providing the required assistance to enhance each aspect of their QOL. We employ machine learning methods to evaluate the eight aspects of QOL and forecast the corresponding index value. Machine learning algorithms input eight aspects of QOL and predict the QOL index value. The QOL Index value says the requirement of the support to a person, and it depends on eight aspects of the QOL. We use our dataset to train the machine learning model. Dataset is collected using the GENCAT scale tool, which takes 69 items and provides the score value for each aspect of the QOL. We apply many linear and nonlinear machine learning regression algorithms. The multiple linear regression algorithm results show better performance for root mean squared error (1.4729) and R-2 score (0.9918).
  • Otros:

    Autor según el artículo: Kumar Yadav, Gaurav; Moreno Vidales, Benigno; Duenas, Sara; Abdel-Nasser, Mohamed; Rashwan, Hatem A; Puig, Domenec; Nandi, G C
    Departamento: Enginyeria Informàtica i Matemàtiques
    Autor/es de la URV: Abdellatif Fatahallah Ibrahim Mahmoud, Hatem / Abdelnasser Mohamed Mahmoud, Mohamed / Puig Valls, Domènec Savi / Yadav, Gaurav Kumar
    Palabras clave: And machine learnin Intellectual and developmental disability Machine learning Priority of care Quality of life Support paradigm
    Resumen: This work aims to enhance dependent persons' quality of life (QOL) by examining various aspects of their lives and providing the required assistance to enhance each aspect of their QOL. We employ machine learning methods to evaluate the eight aspects of QOL and forecast the corresponding index value. Machine learning algorithms input eight aspects of QOL and predict the QOL index value. The QOL Index value says the requirement of the support to a person, and it depends on eight aspects of the QOL. We use our dataset to train the machine learning model. Dataset is collected using the GENCAT scale tool, which takes 69 items and provides the score value for each aspect of the QOL. We apply many linear and nonlinear machine learning regression algorithms. The multiple linear regression algorithm results show better performance for root mean squared error (1.4729) and R-2 score (0.9918).
    Áreas temáticas: Artificial intelligence Ciências agrárias i Comunicació i informació Engenharias iii Engenharias iv General o multidisciplinar Información y documentación Interdisciplinar Medicina ii
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: domenec.puig@urv.cat gauravkumar.yadav@urv.cat hatem.abdellatif@urv.cat mohamed.abdelnasser@urv.cat gauravkumar.yadav@urv.cat
    Identificador del autor: 0000-0002-0562-4205 0000-0001-7022-290X 0000-0001-5421-1637 0000-0002-1074-2441 0000-0001-7022-290X
    Fecha de alta del registro: 2024-09-21
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Enlace a la fuente original: https://ebooks.iospress.nl/doi/10.3233/FAIA220327
    Referencia al articulo segun fuente origial: Frontiers In Artificial Intelligence And Applications. 356 139-142
    Referencia de l'ítem segons les normes APA: Kumar Yadav, Gaurav; Moreno Vidales, Benigno; Duenas, Sara; Abdel-Nasser, Mohamed; Rashwan, Hatem A; Puig, Domenec; Nandi, G C (2022). Predicting Personalized Quality of Life of an Intellectually Disabled Person Utilizing Machine Learning. Amsterdam: IOS Press
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    DOI del artículo: 10.3233/FAIA220327
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2022
    Tipo de publicación: Proceedings Paper
  • Palabras clave:

    Artificial Intelligence
    And machine learnin
    Intellectual and developmental disability
    Machine learning
    Priority of care
    Quality of life
    Support paradigm
    Artificial intelligence
    Ciências agrárias i
    Comunicació i informació
    Engenharias iii
    Engenharias iv
    General o multidisciplinar
    Información y documentación
    Interdisciplinar
    Medicina ii
  • Documentos:

  • Cerca a google

    Search to google scholar