Articles producció científica> Enginyeria Informàtica i Matemàtiques

Absolute Distance Prediction Based on Deep Learning Object Detection and Monocular Depth Estimation Models

  • Datos identificativos

    Identificador: imarina:9380780
    Autores:
    Masoumian, ArminMarei, David G FAbdulwahab, SaddamCristiano, JulianPuig, DomenecRashwan, Hatem A
    Resumen:
    Determining the distance between the objects in a scene and the camera sensor from 2D images is feasible by estimating depth images using stereo cameras or 3D cameras. The outcome of depth estimation is relative distances that can be used to calculate absolute distances to be applicable in reality. However, distance estimation is very challenging using 2D monocular cameras. This paper presents a deep learning framework that consists of two deep networks for depth estimation and object detection using a single image. Firstly, objects in the scene are detected and localized using the You Only Look Once (YOLOv5) network. In parallel, the estimated depth image is computed using a deep autoencoder network to detect the relative distances. The proposed object detection based YOLO was trained using a supervised learning technique, in turn, the network of depth estimation was self-supervised training. The presented distance estimation framework was evaluated on real images of outdoor scenes. The achieved results show that the proposed framework is promising and it yields an accuracy of 96% with RMSE of 0.203 of the correct absolute distance.
  • Otros:

    Autor según el artículo: Masoumian, Armin; Marei, David G F; Abdulwahab, Saddam; Cristiano, Julian; Puig, Domenec; Rashwan, Hatem A
    Departamento: Enginyeria Informàtica i Matemàtiques
    Autor/es de la URV: Abdellatif Fatahallah Ibrahim Mahmoud, Hatem / Abdulwahab, Saddam Abdulrhman Hamed / Cristiano Rodríguez, Julián Efrén / Masoumian, Armin / Puig Valls, Domènec Savi
    Palabras clave: Deep learning Depth estimation Distance predictio Distance prediction Object detection
    Resumen: Determining the distance between the objects in a scene and the camera sensor from 2D images is feasible by estimating depth images using stereo cameras or 3D cameras. The outcome of depth estimation is relative distances that can be used to calculate absolute distances to be applicable in reality. However, distance estimation is very challenging using 2D monocular cameras. This paper presents a deep learning framework that consists of two deep networks for depth estimation and object detection using a single image. Firstly, objects in the scene are detected and localized using the You Only Look Once (YOLOv5) network. In parallel, the estimated depth image is computed using a deep autoencoder network to detect the relative distances. The proposed object detection based YOLO was trained using a supervised learning technique, in turn, the network of depth estimation was self-supervised training. The presented distance estimation framework was evaluated on real images of outdoor scenes. The achieved results show that the proposed framework is promising and it yields an accuracy of 96% with RMSE of 0.203 of the correct absolute distance.
    Áreas temáticas: Artificial intelligence Ciências agrárias i Comunicació i informació Engenharias iii Engenharias iv General o multidisciplinar Información y documentación Interdisciplinar Medicina ii
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: domenec.puig@urv.cat saddam.abdulwahab@urv.cat armin.masoumian@estudiants.urv.cat armin.masoumian@estudiants.urv.cat hatem.abdellatif@urv.cat julianefren.cristianor@urv.cat saddam.abdulwahab@urv.cat
    Identificador del autor: 0000-0002-0562-4205 0000-0001-5421-1637
    Fecha de alta del registro: 2024-09-21
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Enlace a la fuente original: https://ebooks.iospress.nl/doi/10.3233/FAIA210151
    Referencia al articulo segun fuente origial: Frontiers In Artificial Intelligence And Applications. 339 325-334
    Referencia de l'ítem segons les normes APA: Masoumian, Armin; Marei, David G F; Abdulwahab, Saddam; Cristiano, Julian; Puig, Domenec; Rashwan, Hatem A (2021). Absolute Distance Prediction Based on Deep Learning Object Detection and Monocular Depth Estimation Models. Amsterdam: IOS Press
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    DOI del artículo: 10.3233/FAIA210151
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2021
    Tipo de publicación: Proceedings Paper
  • Palabras clave:

    Artificial Intelligence
    Deep learning
    Depth estimation
    Distance predictio
    Distance prediction
    Object detection
    Artificial intelligence
    Ciências agrárias i
    Comunicació i informació
    Engenharias iii
    Engenharias iv
    General o multidisciplinar
    Información y documentación
    Interdisciplinar
    Medicina ii
  • Documentos:

  • Cerca a google

    Search to google scholar