Articles producció científica> Enginyeria Informàtica i Matemàtiques

WEU-Net: A Weight Excitation U-Net for Lung Nodule Segmentation

  • Datos identificativos

    Identificador: imarina:9380783
    Autores:
    Furruka Banu, SyedaSarker, Md Mostafa KamalAbdel-Nasser, MohamedRashwan, Hatem APuig, Domenec
    Resumen:
    Lung cancer is a dangerous non-communicable disease attacking both women and men and every year it causes thousands of deaths worldwide. Accurate lung nodule segmentation in computed tomography (CT) images can help detect lung cancer early. Since there are different locations and indistinguishable shapes of lung nodules in CT images, the accuracy of the existing automated lung nodule segmentation methods still needs further enhancements. In an attempt towards overcoming the above-mentioned challenges, this paper presents WEU-Net; an end-toend encoder-decoder deep learning approach to accurately segment lung nodules in CT images. Specifically, we use a U-Net network as a baseline and propose a weight excitation (WE) mechanism to encourage the deep learning network to learn lung nodule-relevant contextual features during the training stage. WEU-Net was trained and validated on a publicly available CT images dataset called LIDC-IDRI. The experimental results demonstrated that WEU-Net achieved a Dice score of 82.83% and a Jaccard similarity coefficient of 70.55%.
  • Otros:

    Autor según el artículo: Furruka Banu, Syeda; Sarker, Md Mostafa Kamal; Abdel-Nasser, Mohamed; Rashwan, Hatem A; Puig, Domenec
    Departamento: Enginyeria Informàtica i Matemàtiques
    Autor/es de la URV: Abdellatif Fatahallah Ibrahim Mahmoud, Hatem / Abdelnasser Mohamed Mahmoud, Mohamed / Banu, Syeda Furruka / Puig Valls, Domènec Savi
    Palabras clave: Computed tomography (ct) Computer-aided diagnosis (cad) Ct scan Deep learnin Deep learning Lung cancer Lung nodule segmentation Small pulmonary nodules
    Resumen: Lung cancer is a dangerous non-communicable disease attacking both women and men and every year it causes thousands of deaths worldwide. Accurate lung nodule segmentation in computed tomography (CT) images can help detect lung cancer early. Since there are different locations and indistinguishable shapes of lung nodules in CT images, the accuracy of the existing automated lung nodule segmentation methods still needs further enhancements. In an attempt towards overcoming the above-mentioned challenges, this paper presents WEU-Net; an end-toend encoder-decoder deep learning approach to accurately segment lung nodules in CT images. Specifically, we use a U-Net network as a baseline and propose a weight excitation (WE) mechanism to encourage the deep learning network to learn lung nodule-relevant contextual features during the training stage. WEU-Net was trained and validated on a publicly available CT images dataset called LIDC-IDRI. The experimental results demonstrated that WEU-Net achieved a Dice score of 82.83% and a Jaccard similarity coefficient of 70.55%.
    Áreas temáticas: Artificial intelligence Ciências agrárias i Comunicació i informació Engenharias iii Engenharias iv General o multidisciplinar Información y documentación Interdisciplinar Medicina ii
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: domenec.puig@urv.cat syedafurruka.banu@estudiants.urv.cat hatem.abdellatif@urv.cat mohamed.abdelnasser@urv.cat
    Identificador del autor: 0000-0002-0562-4205 0000-0002-5624-1941 0000-0001-5421-1637 0000-0002-1074-2441
    Fecha de alta del registro: 2024-09-21
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Referencia al articulo segun fuente origial: Frontiers In Artificial Intelligence And Applications. 339 349-356
    Referencia de l'ítem segons les normes APA: Furruka Banu, Syeda; Sarker, Md Mostafa Kamal; Abdel-Nasser, Mohamed; Rashwan, Hatem A; Puig, Domenec (2021). WEU-Net: A Weight Excitation U-Net for Lung Nodule Segmentation. Amsterdam: IOS Press
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2021
    Tipo de publicación: Proceedings Paper
  • Palabras clave:

    Artificial Intelligence
    Computed tomography (ct)
    Computer-aided diagnosis (cad)
    Ct scan
    Deep learnin
    Deep learning
    Lung cancer
    Lung nodule segmentation
    Small pulmonary nodules
    Artificial intelligence
    Ciências agrárias i
    Comunicació i informació
    Engenharias iii
    Engenharias iv
    General o multidisciplinar
    Información y documentación
    Interdisciplinar
    Medicina ii
  • Documentos:

  • Cerca a google

    Search to google scholar