Articles producció científica> Química Física i Inorgànica

Plasmonic nanoparticle sensors: current progress, challenges, and future prospects

  • Datos identificativos

    Identificador: imarina:9380968
    Autores:
    Kant KBeeram RCao Ydos Santos PSSGonzález-Cabaleiro LGarcía-Lojo DGuo HJoung YKothadiya SLafuente MLeong YXLiu YLiu YMoram SSBMahasivam SManiappan SQuesada-González DRaj DWeerathunge PXia XYu QAbalde-Cela SAlvarez-Puebla RABardhan RBansal VChoo JCoelho LCCde Almeida JMMMGómez-Graña SGrzelczak MHerves PKumar JLohmueller TMerkoçi AMontaño-Priede JLLing XYMallada RPérez-Juste JPina MPSingamaneni SSoma VRSun MTian LWang JPolavarapu LSantos IP
    Resumen:
    Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions. These unique optical properties of plasmonic NPs have been used to design chemical and biological sensors. Over the last few decades, colloidal plasmonic NPs have been greatly exploited in sensing applications through LSPR shifts (colorimetry), surface-enhanced Raman scattering, surface-enhanced fluorescence, and chiroptical activity. Although colloidal plasmonic NPs have emerged at the forefront of nanobiosensors, there are still several important challenges to be addressed for the realization of plasmonic NP-based sensor kits for routine use in daily life. In this comprehensive review, researchers of different disciplines (colloidal and analytical chemistry, biology, physics, and medicine) have joined together to summarize the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, understanding of the sensing mechanisms, different chemical and biological analytes, and the expected future technologies. This review is expected to guide the researchers currently working in this field and inspire future generations of scientists to join this compelling research field and its branches. This comprehensive review summarizes the past, present, and f
  • Otros:

    Autor según el artículo: Kant K; Beeram R; Cao Y; dos Santos PSS; González-Cabaleiro L; García-Lojo D; Guo H; Joung Y; Kothadiya S; Lafuente M; Leong YX; Liu Y; Liu Y; Moram SSB; Mahasivam S; Maniappan S; Quesada-González D; Raj D; Weerathunge P; Xia X; Yu Q; Abalde-Cela S; Alvarez-Puebla RA; Bardhan R; Bansal V; Choo J; Coelho LCC; de Almeida JMMM; Gómez-Graña S; Grzelczak M; Herves P; Kumar J; Lohmueller T; Merkoçi A; Montaño-Priede JL; Ling XY; Mallada R; Pérez-Juste J; Pina MP; Singamaneni S; Soma VR; Sun M; Tian L; Wang J; Polavarapu L; Santos IP
    Departamento: Química Física i Inorgànica
    Autor/es de la URV: Alvarez Puebla, Ramon Angel
    Palabras clave: Enhanced raman-scattering Label-free detection Lateral flow assays Polymerase-chain-reaction Refractive-index sensitivity Rolling circle amplification Seed-mediated growth Shape-controlled synthesis Surface selection-rule Ultrasensitive sers detection
    Resumen: Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions. These unique optical properties of plasmonic NPs have been used to design chemical and biological sensors. Over the last few decades, colloidal plasmonic NPs have been greatly exploited in sensing applications through LSPR shifts (colorimetry), surface-enhanced Raman scattering, surface-enhanced fluorescence, and chiroptical activity. Although colloidal plasmonic NPs have emerged at the forefront of nanobiosensors, there are still several important challenges to be addressed for the realization of plasmonic NP-based sensor kits for routine use in daily life. In this comprehensive review, researchers of different disciplines (colloidal and analytical chemistry, biology, physics, and medicine) have joined together to summarize the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, understanding of the sensing mechanisms, different chemical and biological analytes, and the expected future technologies. This review is expected to guide the researchers currently working in this field and inspire future generations of scientists to join this compelling research field and its branches. This comprehensive review summarizes the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, different chemical and biological analytes, and the expected future technologies.
    Áreas temáticas: Chemistry, physical General materials science Materials science (all) Materials science (miscellaneous) Materials science, multidisciplinary Nanoscience & nanotechnology
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: ramon.alvarez@urv.cat
    Identificador del autor: 0000-0003-4770-5756
    Fecha de alta del registro: 2024-12-14
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Referencia al articulo segun fuente origial: Nanoscale Horizons. 9 (12): 2085-2166
    Referencia de l'ítem segons les normes APA: Kant K; Beeram R; Cao Y; dos Santos PSS; González-Cabaleiro L; García-Lojo D; Guo H; Joung Y; Kothadiya S; Lafuente M; Leong YX; Liu Y; Liu Y; Moram S (2024). Plasmonic nanoparticle sensors: current progress, challenges, and future prospects. Nanoscale Horizons, 9(12), 2085-2166. DOI: 10.1039/d4nh00226a
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2024
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Chemistry, Physical,Materials Science (Miscellaneous),Materials Science, Multidisciplinary,Nanoscience & Nanotechnology
    Enhanced raman-scattering
    Label-free detection
    Lateral flow assays
    Polymerase-chain-reaction
    Refractive-index sensitivity
    Rolling circle amplification
    Seed-mediated growth
    Shape-controlled synthesis
    Surface selection-rule
    Ultrasensitive sers detection
    Chemistry, physical
    General materials science
    Materials science (all)
    Materials science (miscellaneous)
    Materials science, multidisciplinary
    Nanoscience & nanotechnology
  • Documentos:

  • Cerca a google

    Search to google scholar