Articles producció científica> Infermeria

Machine Learning Approaches to Predict Major Adverse Cardiovascular Events in Atrial Fibrillation

  • Datos identificativos

    Identificador: imarina:9381630
    Autores:
    Moltó-Balado PReverté-Villarroya SAlonso-Barberán VMonclús-Arasa CBalado-Albiol MTClua-Queralt JClua-Espuny JL
    Resumen:
    The increasing prevalence of atrial fibrillation (AF) and its association with Major Adverse Cardiovascular Events (MACE) presents challenges in early identification and treatment. Although existing risk factors, biomarkers, genetic variants, and imaging parameters predict MACE, emerging factors may be more decisive. Artificial intelligence and machine learning techniques (ML) offer a promising avenue for more effective AF evolution prediction. Five ML models were developed to obtain predictors of MACE in AF patients. Two-thirds of the data were used for training, employing diverse approaches and optimizing to minimize prediction errors, while the remaining third was reserved for testing and validation. AdaBoost emerged as the top-performing model (accuracy: 0.9999; recall: 1; F1 score: 0.9997). Noteworthy features influencing predictions included the Charlson Comorbidity Index (CCI), diabetes mellitus, cancer, the Wells scale, and CHA2DS2-VASc, with specific associations identified. Elevated MACE risk was observed, with a CCI score exceeding 2.67 ± 1.31 (p < 0.001), CHA2DS2-VASc score of 4.62 ± 1.02 (p < 0.001), and an intermediate-risk Wells scale classification. Overall, the AdaBoost ML offers an alternative predictive approach to facilitate the early identification of MACE risk in the assessment of patients with AF.
  • Otros:

    Autor según el artículo: Moltó-Balado P; Reverté-Villarroya S; Alonso-Barberán V; Monclús-Arasa C; Balado-Albiol MT; Clua-Queralt J; Clua-Espuny JL
    Departamento: Infermeria
    Autor/es de la URV: REVERTÉ REVERTÉ, SANDRA / Reverté Villarroya, Silvia
    Palabras clave: Artificial intelligence Atrial fibrillation Machine learning Major adverse cardiovascular events (mace)
    Resumen: The increasing prevalence of atrial fibrillation (AF) and its association with Major Adverse Cardiovascular Events (MACE) presents challenges in early identification and treatment. Although existing risk factors, biomarkers, genetic variants, and imaging parameters predict MACE, emerging factors may be more decisive. Artificial intelligence and machine learning techniques (ML) offer a promising avenue for more effective AF evolution prediction. Five ML models were developed to obtain predictors of MACE in AF patients. Two-thirds of the data were used for training, employing diverse approaches and optimizing to minimize prediction errors, while the remaining third was reserved for testing and validation. AdaBoost emerged as the top-performing model (accuracy: 0.9999; recall: 1; F1 score: 0.9997). Noteworthy features influencing predictions included the Charlson Comorbidity Index (CCI), diabetes mellitus, cancer, the Wells scale, and CHA2DS2-VASc, with specific associations identified. Elevated MACE risk was observed, with a CCI score exceeding 2.67 ± 1.31 (p < 0.001), CHA2DS2-VASc score of 4.62 ± 1.02 (p < 0.001), and an intermediate-risk Wells scale classification. Overall, the AdaBoost ML offers an alternative predictive approach to facilitate the early identification of MACE risk in the assessment of patients with AF.
    Áreas temáticas: Computer science (miscellaneous) Engineering, multidisciplinary
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: silvia.reverte@urv.cat
    Identificador del autor: 0000-0002-2052-9978
    Fecha de alta del registro: 2024-10-12
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Referencia al articulo segun fuente origial: Technologies. 12 (2):
    Referencia de l'ítem segons les normes APA: Moltó-Balado P; Reverté-Villarroya S; Alonso-Barberán V; Monclús-Arasa C; Balado-Albiol MT; Clua-Queralt J; Clua-Espuny JL (2024). Machine Learning Approaches to Predict Major Adverse Cardiovascular Events in Atrial Fibrillation. Technologies, 12(2), -. DOI: 10.3390/technologies12020013
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2024
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Engineering, Multidisciplinary
    Artificial intelligence
    Atrial fibrillation
    Machine learning
    Major adverse cardiovascular events (mace)
    Computer science (miscellaneous)
    Engineering, multidisciplinary
  • Documentos:

  • Cerca a google

    Search to google scholar