Autor según el artículo: Hassanien, Mohamed A; Singh, Vivek Kumar; Puig, Domenec; Abdel-Nasser, Mohamed
Departamento: Enginyeria Informàtica i Matemàtiques
Autor/es de la URV: Abdelnasser Mohamed Mahmoud, Mohamed / Puig Valls, Domènec Savi
Palabras clave: Breast cancer Cad systems Radiomics Ultrasound imaging Vision transformer Vision transformers
Resumen: Breast cancer must be detected early to reduce the mortality rate. Ultrasound images can make it easier for the clinician to diagnose cases of dense breasts. This study presents a deep vision transformer-based approach for predicting breast cancer malignancy scores from ultrasound images. In particular, various state-of-the-art deep vision transformers such as BEiT, CaiT, Swin, XCiT, and VisFormer are adapted and trained to extract robust radiomics to classify breast tumors in ultrasound images as benign or malignant. The best-performing model is used to predict the malignancy score of each input ultrasound image. Experimental results revealed that the proposed approach achieves promising results for the detection of malignant tumors of the breast on ultrasound images.
Áreas temáticas: Artificial intelligence Ciências agrárias i Comunicació i informació Engenharias iii Engenharias iv General o multidisciplinar Información y documentación Interdisciplinar Medicina ii
Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
Direcció de correo del autor: domenec.puig@urv.cat mohamed.abdelnasser@urv.cat
Identificador del autor: 0000-0002-0562-4205 0000-0002-1074-2441
Fecha de alta del registro: 2024-10-12
Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
Enlace a la fuente original: https://ebooks.iospress.nl/doi/10.3233/FAIA220351
Referencia al articulo segun fuente origial: Frontiers In Artificial Intelligence And Applications. 356 298-307
Referencia de l'ítem segons les normes APA: Hassanien, Mohamed A; Singh, Vivek Kumar; Puig, Domenec; Abdel-Nasser, Mohamed (2022). Transformer-Based Radiomics for Predicting Breast Tumor Malignancy Score in Ultrasonography. Amsterdam: IOS Press
URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
DOI del artículo: 10.3233/FAIA220351
Entidad: Universitat Rovira i Virgili
Año de publicación de la revista: 2022
Tipo de publicación: Proceedings Paper