Autor según el artículo: Maaroof N; Moreno A; Jabreel M; Valls A
Departamento: Enginyeria Informàtica i Matemàtiques
Autor/es de la URV: Moreno Ribas, Antonio / Valls Mateu, Aïda
Palabras clave: Diabetic retinopathy Explainable ai (xai) Fuzzy decision tree Lore Machine learning
Resumen: Classification systems based Machine Learning hide the logic of their internal decision processes from the users. Hence, post-hoc explanations about their predictions are often required. This paper proposes Fuzzy-LORE, a method that generates local explanations for fuzzy-based Machine Learning systems. First, it learns a local fuzzy decision tree using a set of synthetic neighbours from the input instance. Then, it extracts from the logic of the fuzzy decision tree a meaningful explanation consisting of a set of decision rules (which explain the reasons behind the decision), a set of counterfactual rules (which inform of small changes in the instance's features that would lead to a different outcome), and finally a set of specific counterfactual examples. Our experiments on a real-world medical dataset show that Fuzzy-LORE outperforms prior approaches and methods for generating local explanations.
Áreas temáticas: Artificial intelligence Ciências agrárias i Comunicació i informació Engenharias iii Engenharias iv General o multidisciplinar Información y documentación Interdisciplinar Medicina ii
Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
Direcció de correo del autor: aida.valls@urv.cat antonio.moreno@urv.cat
Identificador del autor: 0000-0003-3616-7809 0000-0003-3945-2314
Fecha de alta del registro: 2024-10-12
Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
Enlace a la fuente original: https://ebooks.iospress.nl/doi/10.3233/FAIA220357
Referencia al articulo segun fuente origial: Frontiers In Artificial Intelligence And Applications. 356 345-354
Referencia de l'ítem segons les normes APA: Maaroof N; Moreno A; Jabreel M; Valls A (2022). Fuzzy-LORE: A Method for Extracting Local and Counterfactual Explanations Using Fuzzy Decision Trees. Amsterdam: IOS Press
URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
DOI del artículo: 10.3233/FAIA220357
Entidad: Universitat Rovira i Virgili
Año de publicación de la revista: 2022
Tipo de publicación: Proceedings Paper