Articles producció científica> Enginyeria Informàtica i Matemàtiques

A symplectic approach to Schrodinger equations in the infinite-dimensional unbounded setting

  • Datos identificativos

    Identificador: imarina:9387495
    Autores:
    de Lucas, JavierLange, JuliaRivas, Xavier
    Resumen:
    By using the theory of analytic vectors and manifolds modeled on normed spaces, we provide a rigorous symplectic differential geometric approach to t-dependent Schrodinger equations on separable (possibly infinite-dimensional) Hilbert spaces determined by families of unbounded selfadjoint Hamiltonians admitting a common domain of analytic vectors. This allows one to cope with the lack of smoothness of structures appearing in quantum mechanical problems while using differential geometric techniques. Our techniques also allow for the analysis of problems related to unbounded operators that are not self-adjoint. As an application, the Marsden-Weinstein reduction procedure was employed to map the above-mentioned t-dependent Schrodinger equations onto their projective spaces. We also analyzed other physically and mathematically relevant applications, demonstrating the usefulness of our techniques.
  • Otros:

    Autor según el artículo: de Lucas, Javier; Lange, Julia; Rivas, Xavier
    Departamento: Enginyeria Informàtica i Matemàtiques
    Autor/es de la URV: Rivas Guijarro, Xavier
    Palabras clave: Analytic vector Geometrization Hamiltonian system Infinite-dimensional symplectic manifold Integrabilit Marsden-weinstein reduction Mathematical exposition Normed space Projective schro<spacing diaeresis>dinger equation Quantum-mechanics Representations Unbounded operato
    Resumen: By using the theory of analytic vectors and manifolds modeled on normed spaces, we provide a rigorous symplectic differential geometric approach to t-dependent Schrodinger equations on separable (possibly infinite-dimensional) Hilbert spaces determined by families of unbounded selfadjoint Hamiltonians admitting a common domain of analytic vectors. This allows one to cope with the lack of smoothness of structures appearing in quantum mechanical problems while using differential geometric techniques. Our techniques also allow for the analysis of problems related to unbounded operators that are not self-adjoint. As an application, the Marsden-Weinstein reduction procedure was employed to map the above-mentioned t-dependent Schrodinger equations onto their projective spaces. We also analyzed other physically and mathematically relevant applications, demonstrating the usefulness of our techniques.
    Áreas temáticas: General mathematics Mathematics Mathematics (all) Mathematics (miscellaneous) Mathematics, applied
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: xavier.rivas@urv.cat
    Fecha de alta del registro: 2024-10-26
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Referencia al articulo segun fuente origial: Aims Mathematics. 9 (10): 27998-28043
    Referencia de l'ítem segons les normes APA: de Lucas, Javier; Lange, Julia; Rivas, Xavier (2024). A symplectic approach to Schrodinger equations in the infinite-dimensional unbounded setting. Aims Mathematics, 9(10), 27998-28043. DOI: 10.3934/math.20241359/math.20241359
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2024
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Mathematics,Mathematics (Miscellaneous),Mathematics, Applied
    Analytic vector
    Geometrization
    Hamiltonian system
    Infinite-dimensional symplectic manifold
    Integrabilit
    Marsden-weinstein reduction
    Mathematical exposition
    Normed space
    Projective schrodinger equation
    Quantum-mechanics
    Representations
    Unbounded operato
    General mathematics
    Mathematics
    Mathematics (all)
    Mathematics (miscellaneous)
    Mathematics, applied
  • Documentos:

  • Cerca a google

    Search to google scholar