Autor según el artículo: de Lucas, Javier; Lange, Julia; Rivas, Xavier
Departamento: Enginyeria Informàtica i Matemàtiques
Autor/es de la URV: Rivas Guijarro, Xavier
Palabras clave: Analytic vector Geometrization Hamiltonian system Infinite-dimensional symplectic manifold Integrabilit Marsden-weinstein reduction Mathematical exposition Normed space Projective schro<spacing diaeresis>dinger equation Quantum-mechanics Representations Unbounded operato
Resumen: By using the theory of analytic vectors and manifolds modeled on normed spaces, we provide a rigorous symplectic differential geometric approach to t-dependent Schrodinger equations on separable (possibly infinite-dimensional) Hilbert spaces determined by families of unbounded selfadjoint Hamiltonians admitting a common domain of analytic vectors. This allows one to cope with the lack of smoothness of structures appearing in quantum mechanical problems while using differential geometric techniques. Our techniques also allow for the analysis of problems related to unbounded operators that are not self-adjoint. As an application, the Marsden-Weinstein reduction procedure was employed to map the above-mentioned t-dependent Schrodinger equations onto their projective spaces. We also analyzed other physically and mathematically relevant applications, demonstrating the usefulness of our techniques.
Áreas temáticas: General mathematics Mathematics Mathematics (all) Mathematics (miscellaneous) Mathematics, applied
Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
Direcció de correo del autor: xavier.rivas@urv.cat
Fecha de alta del registro: 2024-10-26
Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
Enlace a la fuente original: https://www.aimspress.com/article/doi/10.3934/math.20241359
Referencia al articulo segun fuente origial: Aims Mathematics. 9 (10): 27998-28043
Referencia de l'ítem segons les normes APA: de Lucas, Javier; Lange, Julia; Rivas, Xavier (2024). A symplectic approach to Schrodinger equations in the infinite-dimensional unbounded setting. Aims Mathematics, 9(10), 27998-28043. DOI: 10.3934/math.20241359/math.20241359
URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
DOI del artículo: 10.3934/math.20241359
Entidad: Universitat Rovira i Virgili
Año de publicación de la revista: 2024
Tipo de publicación: Journal Publications