Articles producció científica> Enginyeria Química

Machine learning mathematical models for incidence estimation during pandemics

  • Datos identificativos

    Identificador: imarina:9414860
    Autores:
    Fajardo-Fontiveros, OscarMattei, MattiaBurgio, GiulioGranell, ClaraGomez, SergioArenas, AlexSales-Pardo, MartaGuimera, Roger
    Resumen:
    Accurate estimates of the incidence of infectious diseases are key for the control of epidemics. However, healthcare systems are often unable to test the population exhaustively, especially when asymptomatic and paucisymptomatic cases are widespread; this leads to significant and systematic under-reporting of the real incidence. Here, we propose a machine learning approach to estimate the incidence of a pandemic in real-time, using reported cases and the overall test rate. In particular, we use Bayesian symbolic regression to automatically learn the closed-form mathematical models that most parsimoniously describe incidence. We develop and validate our models using COVID-19 incidence values for nine different countries, confirming their ability to accurately predict daily incidence. Remarkably, despite the differences in epidemic trajectories and dynamics across countries, we find that a single model for all countries offers a more parsimonious description and is more predictive of actual incidence compared to separate models for each country. Our results show the potential to accurately model incidence in real-time using closed-form mathematical models, providing a valuable tool for public health decision-makers.
  • Otros:

    Autor según el artículo: Fajardo-Fontiveros, Oscar; Mattei, Mattia; Burgio, Giulio; Granell, Clara; Gomez, Sergio; Arenas, Alex; Sales-Pardo, Marta; Guimera, Roger
    Departamento: Enginyeria Química
    Autor/es de la URV: Arenas Moreno, Alejandro / Burgio, Giulio / Gómez Jiménez, Sergio / Guimera Manrique, Roger / Sales Pardo, Marta
    Palabras clave: Sars-cov-2 Pandemics Models, theoretical Machine learning Incidence Humans Good health and well-being Covid-19 Computational biology Bayes theorem
    Resumen: Accurate estimates of the incidence of infectious diseases are key for the control of epidemics. However, healthcare systems are often unable to test the population exhaustively, especially when asymptomatic and paucisymptomatic cases are widespread; this leads to significant and systematic under-reporting of the real incidence. Here, we propose a machine learning approach to estimate the incidence of a pandemic in real-time, using reported cases and the overall test rate. In particular, we use Bayesian symbolic regression to automatically learn the closed-form mathematical models that most parsimoniously describe incidence. We develop and validate our models using COVID-19 incidence values for nine different countries, confirming their ability to accurately predict daily incidence. Remarkably, despite the differences in epidemic trajectories and dynamics across countries, we find that a single model for all countries offers a more parsimonious description and is more predictive of actual incidence compared to separate models for each country. Our results show the potential to accurately model incidence in real-time using closed-form mathematical models, providing a valuable tool for public health decision-makers.
    Áreas temáticas: Saúde coletiva Psicología Molecular biology Modeling and simulation Medicina ii Medicina i Mathematics, interdisciplinary applications Mathematical & computational biology Matemática / probabilidade e estatística Interdisciplinar Genetics Ensino Engenharias iv Engenharias iii Ecology, evolution, behavior and systematics Ecology Computational theory and mathematics Ciências biológicas ii Ciências biológicas i Ciências agrárias i Ciência da computação Cellular and molecular neuroscience Biotecnología Biodiversidade Biochemical research methods Astronomia / física
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: roger.guimera@urv.cat sergio.gomez@urv.cat alexandre.arenas@urv.cat marta.sales@urv.cat
    Identificador del autor: 0000-0002-3597-4310 0000-0003-1820-0062 0000-0003-0937-0334 0000-0002-8140-6525
    Fecha de alta del registro: 2025-03-15
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referencia al articulo segun fuente origial: Plos Computational Biology. 20 (12): e1012687-
    Referencia de l'ítem segons les normes APA: Fajardo-Fontiveros, Oscar; Mattei, Mattia; Burgio, Giulio; Granell, Clara; Gomez, Sergio; Arenas, Alex; Sales-Pardo, Marta; Guimera, Roger (2024). Machine learning mathematical models for incidence estimation during pandemics. Plos Computational Biology, 20(12), e1012687-. DOI: 10.1371/journal.pcbi.1012687
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2024
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Biochemical Research Methods,Cellular and Molecular Neuroscience,Computational Theory and Mathematics,Ecology,Ecology, Evolution, Behavior and Systematics,Genetics,Mathematical & Computational Biology,Mathematics, Interdisciplinary Applications,Modeling and Simulation,Molecular Biology
    Sars-cov-2
    Pandemics
    Models, theoretical
    Machine learning
    Incidence
    Humans
    Good health and well-being
    Covid-19
    Computational biology
    Bayes theorem
    Saúde coletiva
    Psicología
    Molecular biology
    Modeling and simulation
    Medicina ii
    Medicina i
    Mathematics, interdisciplinary applications
    Mathematical & computational biology
    Matemática / probabilidade e estatística
    Interdisciplinar
    Genetics
    Ensino
    Engenharias iv
    Engenharias iii
    Ecology, evolution, behavior and systematics
    Ecology
    Computational theory and mathematics
    Ciências biológicas ii
    Ciências biológicas i
    Ciências agrárias i
    Ciência da computação
    Cellular and molecular neuroscience
    Biotecnología
    Biodiversidade
    Biochemical research methods
    Astronomia / física
  • Documentos:

  • Cerca a google

    Search to google scholar