Autor según el artículo: Fajardo-Fontiveros, Oscar; Mattei, Mattia; Burgio, Giulio; Granell, Clara; Gomez, Sergio; Arenas, Alex; Sales-Pardo, Marta; Guimera, Roger
Departamento: Enginyeria Química
Autor/es de la URV: Arenas Moreno, Alejandro / Burgio, Giulio / Gómez Jiménez, Sergio / Guimera Manrique, Roger / Sales Pardo, Marta
Palabras clave: Sars-cov-2 Pandemics Models, theoretical Machine learning Incidence Humans Good health and well-being Covid-19 Computational biology Bayes theorem
Resumen: Accurate estimates of the incidence of infectious diseases are key for the control of epidemics. However, healthcare systems are often unable to test the population exhaustively, especially when asymptomatic and paucisymptomatic cases are widespread; this leads to significant and systematic under-reporting of the real incidence. Here, we propose a machine learning approach to estimate the incidence of a pandemic in real-time, using reported cases and the overall test rate. In particular, we use Bayesian symbolic regression to automatically learn the closed-form mathematical models that most parsimoniously describe incidence. We develop and validate our models using COVID-19 incidence values for nine different countries, confirming their ability to accurately predict daily incidence. Remarkably, despite the differences in epidemic trajectories and dynamics across countries, we find that a single model for all countries offers a more parsimonious description and is more predictive of actual incidence compared to separate models for each country. Our results show the potential to accurately model incidence in real-time using closed-form mathematical models, providing a valuable tool for public health decision-makers.
Áreas temáticas: Saúde coletiva Psicología Molecular biology Modeling and simulation Medicina ii Medicina i Mathematics, interdisciplinary applications Mathematical & computational biology Matemática / probabilidade e estatística Interdisciplinar Genetics Ensino Engenharias iv Engenharias iii Ecology, evolution, behavior and systematics Ecology Computational theory and mathematics Ciências biológicas ii Ciências biológicas i Ciências agrárias i Ciência da computação Cellular and molecular neuroscience Biotecnología Biodiversidade Biochemical research methods Astronomia / física
Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
Direcció de correo del autor: roger.guimera@urv.cat sergio.gomez@urv.cat alexandre.arenas@urv.cat marta.sales@urv.cat
Identificador del autor: 0000-0002-3597-4310 0000-0003-1820-0062 0000-0003-0937-0334 0000-0002-8140-6525
Fecha de alta del registro: 2025-03-15
Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
Referencia al articulo segun fuente origial: Plos Computational Biology. 20 (12): e1012687-
Referencia de l'ítem segons les normes APA: Fajardo-Fontiveros, Oscar; Mattei, Mattia; Burgio, Giulio; Granell, Clara; Gomez, Sergio; Arenas, Alex; Sales-Pardo, Marta; Guimera, Roger (2024). Machine learning mathematical models for incidence estimation during pandemics. Plos Computational Biology, 20(12), e1012687-. DOI: 10.1371/journal.pcbi.1012687
Entidad: Universitat Rovira i Virgili
Año de publicación de la revista: 2024
Tipo de publicación: Journal Publications