Autor según el artículo: Gonzalez, Ramon; Morales, Pilar; Tronchoni, Jordi; Cordero-Bueso, Gustavo; Vaudano, Enrico; Quiros, Manuel; Novo, Maite; Torres-Pérez, Rafael; Valero, Eva
Departamento: Bioquímica i Biotecnologia
Autor/es de la URV: Novo Molinero, Maria Teresa
Palabras clave: Yeast Tm Peroxisome Pathway Osmotic stress Osmoregulation Mitochondrial translation Identification Golgi-endosome Gid-complex Gid-comple Expression Endomembrane system Deletion mutants Activation osmotic stress mitochondrial translation golgi-endosome gid-complex endomembrane system
Resumen: Adaptation to changes in osmolarity is fundamental for the survival of living cells, and has implications in food and industrial biotechnology. It has been extensively studied in the yeast Saccharomyces cerevisiae, where the Hog1 stress activated protein kinase was discovered about 20 years ago. Hog1 is the core of the intracellular signaling pathway that governs the adaptive response to osmotic stress in this species. The main endpoint of this program is synthesis and intracellular retention of glycerol, as a compatible osmolyte. Despite many details of the signaling pathways and yeast responses to osmotic challenges have already been described, genome-wide approaches are contributing to refine our knowledge of yeast adaptation to hypertonic media. In this work, we used a quantitative fitness analysis approach in order to deepen our understanding of the interplay between yeast cells and the osmotic environment. Genetic requirements for proper growth under osmotic stress showed both common and specific features when hypertonic conditions were induced by either glucose or sorbitol. Tolerance to high-glucose content requires mitochondrial function, while defective protein targeting to peroxisome. GID-complex function (involved in negative regulation of gluconeogenesis), or chromatin dynamics, result in poor survival to sorbitol-induced osmotic stress. On the other side, the competitive disadvantage of yeast strains defective in the endomembrane system is relieved by hypertonic conditions. This finding points to the Golgi-endosome system as one of the main cell components negatively affected by hyperosmolarity. Most of the biological processes highlighted in this analysis had not been previously related to osmotic stress but are probably relevant in an ecological and evolutionary context.
Áreas temáticas: Zootecnia / recursos pesqueiros Saúde coletiva Química Odontología Nutrição Microbiology (medical) Microbiology Medicina veterinaria Medicina ii Medicina i Materiais Matemática / probabilidade e estatística Interdisciplinar Geografía Geociências Farmacia Ensino Engenharias iii Engenharias ii Engenharias i Economia Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Ciência da computação Biotecnología Biodiversidade Astronomia / física
Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
Direcció de correo del autor: mteresa.novo@urv.cat
Identificador del autor: 0000-0002-2454-1990
Fecha de alta del registro: 2025-03-22
Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
Referencia al articulo segun fuente origial: Frontiers In Microbiology. 7 (SEP): 1545-
Referencia de l'ítem segons les normes APA: Gonzalez, Ramon; Morales, Pilar; Tronchoni, Jordi; Cordero-Bueso, Gustavo; Vaudano, Enrico; Quiros, Manuel; Novo, Maite; Torres-Pérez, Rafael; Valero, (2016). New Genes Involved in Osmotic Stress Tolerance in Saccharomyces cerevisiae. Frontiers In Microbiology, 7(SEP), -. DOI: 10.3389/fmicb.2016.01545
Entidad: Universitat Rovira i Virgili
Año de publicación de la revista: 2016
Tipo de publicación: Journal Publications