Articles producció científica> Enginyeria Química

Human mobility is well described by closed-form gravity-like models learned automatically from data

  • Datos identificativos

    Identificador: imarina:9443115
    Autores:
    Cabanas-Tirapu, OriolDanus, LluisMoro, EstebanSales-Pardo, MartaGuimera, Roger
    Resumen:
    Modeling human mobility is critical to address questions in urban planning, sustainability, public health, and economic development. However, our understanding and ability to model flows between urban areas are still incomplete. At one end of the modeling spectrum we have gravity models, which are easy to interpret but provide modestly accurate predictions of flows. At the other end, we have machine learning models, with tens of features and thousands of parameters, which predict mobility more accurately than gravity models but do not provide clear insights on human behavior. Here, we show that simple machine-learned, closed-form models of mobility can predict mobility flows as accurately as complex machine learning models, and extrapolate better. Moreover, these models are simple and gravity-like, and can be interpreted similarly to standard gravity models. These models work for different datasets and at different scales, suggesting that they may capture the fundamental universal features of human mobility.
  • Otros:

    Autor según el artículo: Cabanas-Tirapu, Oriol; Danus, Lluis; Moro, Esteban; Sales-Pardo, Marta; Guimera, Roger
    Departamento: Enginyeria Química
    Autor/es de la URV: Guimera Manrique, Roger / Sales Pardo, Marta
    Palabras clave: City planning Gravitation Humans Machine learning Models, theoretical
    Resumen: Modeling human mobility is critical to address questions in urban planning, sustainability, public health, and economic development. However, our understanding and ability to model flows between urban areas are still incomplete. At one end of the modeling spectrum we have gravity models, which are easy to interpret but provide modestly accurate predictions of flows. At the other end, we have machine learning models, with tens of features and thousands of parameters, which predict mobility more accurately than gravity models but do not provide clear insights on human behavior. Here, we show that simple machine-learned, closed-form models of mobility can predict mobility flows as accurately as complex machine learning models, and extrapolate better. Moreover, these models are simple and gravity-like, and can be interpreted similarly to standard gravity models. These models work for different datasets and at different scales, suggesting that they may capture the fundamental universal features of human mobility.
    Áreas temáticas: Antropologia / arqueologia Astronomia / física Biochemistry, genetics and molecular biology (all) Biochemistry, genetics and molecular biology (miscellaneous) Biodiversidade Biotecnología Chemistry (all) Chemistry (miscellaneous) Ciência da computação Ciências agrárias i Ciências ambientais Ciências biológicas i Ciências biológicas ii Ciências biológicas iii Educação física Engenharias iv Farmacia General biochemistry,genetics and molecular biology General chemistry General medicine General physics and astronomy Geociências Interdisciplinar Matemática / probabilidade e estatística Materiais Medicina i Medicina ii Medicina iii Medicina veterinaria Multidisciplinary Multidisciplinary sciences Nutrição Odontología Physics and astronomy (all) Physics and astronomy (miscellaneous) Planejamento urbano e regional / demografia Psicología Química Saúde coletiva Zootecnia / recursos pesqueiros
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: marta.sales@urv.cat roger.guimera@urv.cat
    Identificador del autor: 0000-0002-8140-6525 0000-0002-3597-4310
    Fecha de alta del registro: 2025-02-19
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Referencia al articulo segun fuente origial: Nature Communications. 16 (1): 1336-
    Referencia de l'ítem segons les normes APA: Cabanas-Tirapu, Oriol; Danus, Lluis; Moro, Esteban; Sales-Pardo, Marta; Guimera, Roger (2025). Human mobility is well described by closed-form gravity-like models learned automatically from data. Nature Communications, 16(1), 1336-. DOI: 10.1038/s41467-025-56495-5
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2025
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Biochemistry, Genetics and Molecular Biology (Miscellaneous),Chemistry (Miscellaneous),Multidisciplinary Sciences,Physics and Astronomy (Miscellaneous)
    City planning
    Gravitation
    Humans
    Machine learning
    Models, theoretical
    Antropologia / arqueologia
    Astronomia / física
    Biochemistry, genetics and molecular biology (all)
    Biochemistry, genetics and molecular biology (miscellaneous)
    Biodiversidade
    Biotecnología
    Chemistry (all)
    Chemistry (miscellaneous)
    Ciência da computação
    Ciências agrárias i
    Ciências ambientais
    Ciências biológicas i
    Ciências biológicas ii
    Ciências biológicas iii
    Educação física
    Engenharias iv
    Farmacia
    General biochemistry,genetics and molecular biology
    General chemistry
    General medicine
    General physics and astronomy
    Geociências
    Interdisciplinar
    Matemática / probabilidade e estatística
    Materiais
    Medicina i
    Medicina ii
    Medicina iii
    Medicina veterinaria
    Multidisciplinary
    Multidisciplinary sciences
    Nutrição
    Odontología
    Physics and astronomy (all)
    Physics and astronomy (miscellaneous)
    Planejamento urbano e regional / demografia
    Psicología
    Química
    Saúde coletiva
    Zootecnia / recursos pesqueiros
  • Documentos:

  • Cerca a google

    Search to google scholar