Autor según el artículo: Barreiro-Ures, Daniel Cao, Ricardo Francisco-Fernández, Mario Reyes, Miguel
Palabras clave: Bootstrap bandwidth
Resumen: Interval-grouped data appear when the observations are not obtained in continuous time, but monitored in periodical time instants. In this framework, a nonparametric kernel distribution estimator is proposed and studied. The asymptotic bias, variance and mean integrated squared error of the new approach are derived. From the asymptotic mean integrated squared error, a plug-in bandwidth is proposed. Additionally, a bootstrap selector to be used in this context is designed. Through a comprehensive simulation study, the behaviour of the estimator and the bandwidth selectors considering different scenarios of data grouping is shown. The performance of the different approaches is also illustrated with a real grouped emergence data set of Avena sterilis (wild oat).
Año de publicación de la revista: 2019
Tipo de publicación: ##rt.metadata.pkp.peerReviewed## info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article