Revistes Publicacions URV: Triangle - llenguatge, literatura, computació> 2012

A Survey of State Merging Strategies for DFA Identification in the Limit

  • Identification data

    Identifier: RP:4412
  • Authors:

    Tîrnăucă, Cristina
  • Others:

    Author, as appears in the article.: Tîrnăucă, Cristina
    Keywords: language
    Abstract: Identication of deterministic nite automata (DFAs) has an extensive history, both in passive learning and in active learning. Intractability results by Gold [5] and Angluin [1] show that nding the smallest automaton consistent with a set of accepted and rejected strings is NP-complete. Nevertheless, a lot of work has been done on learning DFAs from examples within specic heuristics, starting with Trakhtenbrot and Barzdin's algorithm [15], rediscovered and applied to the discipline of grammatical inference by Gold [5]. Many other algorithms have been developed, the convergence of most of which is based on characteristic sets: RPNI (Regular Positive and Negative Inference) by J. Oncina and P. García [11, 12], Traxbar by K. Lang [8], EDSM (Evidence Driven State Merging), Windowed EDSM and Blue- Fringe EDSM by K. Lang, B. Pearlmutter and R. Price [9], SAGE (Self-Adaptive Greedy Estimate) by H. Juillé [7], etc. This paper provides a comprehensive study of the most important state merging strategies developed so far.
    Journal publication year: 2012
    Publication Type: info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article