Tesis doctorals> Departament d'Enginyeria Informàtica i Matemàtiques

Ontology based semantic clustering

  • Datos identificativos

    Identificador: TDX:896
    Autores:
    Batet Sanromà, Montserrat
    Resumen:
    Clustering algorithms have focused on the management of numerical and categorical data. However, in the last years, textual information has grown in importance. Proper processing of this kind of information within data mining methods requires an interpretation of their meaning at a semantic level. In this work, a clustering method aimed to interpret, in an integrated manner, numerical, categorical and textual data is presented. Textual data will be interpreted by means of semantic similarity measures. These measures calculate the alikeness between words by exploiting one or several knowledge sources. In this work we also propose two new ways of compute semantic similarity based on 1) the exploitation of the taxonomical knowledge available on one or several ontologies and 2) the estimation of the information distribution of terms in the Web. Results show that a proper interpretation of textual data at a semantic level improves clustering results and eases the interpretability of the classifications
  • Otros:

    Fecha: 2011-02-15
    Departamento/Instituto: Departament d'Enginyeria Informàtica i Matemàtiques Universitat Rovira i Virgili.
    Idioma: eng
    Identificador: urn:isbn:9788469432327 http://hdl.handle.net/10803/31913
    Fuente: TDX (Tesis Doctorals en Xarxa)
    Autor: Batet Sanromà, Montserrat
    Director: Gibert Oliveras, Karina Valls, Aïda
    Formato: application/pdf 193 p.
    Editor: Universitat Rovira i Virgili
    Palabra clave: unsupervised classification classificació no supervisada Semantic Similarity Semblanza Semántica Semblança Semàntica Ontologies
    Título: Ontology based semantic clustering
    Materia: 004 - Informàtica
  • Palabras clave:

    004 - Informàtica
  • Documentos:

  • Cerca a google

    Search to google scholar