Treballs Fi de Grau> Bioquímica i Biotecnologia

Binding affinity and pose prediction for non-covalent M-pro SARS-CoV-2 inhibitors: An evaluation of most popular prediction methodologies

  • Dades identificatives

    Identificador: TFG:4405
    Handle: http://hdl.handle.net/20.500.11797/TFG4405
  • Autors:

    Vilalta Mor, Júlia
  • Altres:

    Data d'alta al repositori: 2022-02-03
    Resum: Avaluació de les dues metodologies més populars utilitzades en estudis de descobriment de fàrmacs: predicció de l'afinitat d'unió proteïna-lligant i predicció de poses per inhibidors de M-pro no covalents. La combinació d'ambdues metodologies de predicció podria ser útil per predir la bioactivitat dels possibles inhibidors de M-pro i avançar en el descobriment de fàrmacs utilitzats per al tractament de la malaltia COVID-19. D'aquesta manera, aprofitem els complexos proteïna-lligant entre inhibidors M-pro i no covalents disponibles gràcies al projecte COVID Moonshot per analitzar el rendiment de diferents eines d'ús habitual tant per a metodologies predictives com per avaluar l'estat de l'art de l'exactitud de les seves prediccions. Evaluation of the two most popular methodologies used in drug discovery studies: prediction of protein-ligand binding affinity and pose prediction for non-covalent M-pro inhibitors. The combination of both prediction methodologies could be useful to predict the bioactivity of potential M-pro inhibitors and step forward on the drug discovery used for the COVID-19 disease treatment. In this way, we take advantage of the protein-ligand complexes between M-pro and non-covalent inhibitors available thanks to the COVID Moonshot project to analyse the performance of different commonly used tools for both predictive methodologies and evaluate the state-of-art of the accuracy of their predictions.
    Matèria: Bioquímica i biotecnologia
    Idioma: en
    Àrees temàtiques: Bioquímica i biotecnologia Biochemistry and biotechnology Bioquímica y biotecnología
    Departament: Bioquímica i Biotecnologia
    Estudiant: Vilalta Mor, Júlia
    Curs acadèmic: 2020-2021
    Títol en diferents idiomes: Afinitat d'unió i predicció de la pose per a inhibidors no covalents de la M-pro del SARS-CoV-2: Una avaluació de les metodologies de predicció més populars Binding affinity and pose prediction for non-covalent M-pro SARS-CoV-2 inhibitors: An evaluation of most popular prediction methodologies Afinidad de unión y predicción de la pose para inhibidores no covalentes de la M-pro del SARS-CoV-2: Una evaluación de las metodologías de predicción más populares
    Data de la defensa del treball: 2021-06-23
    Drets d'accés: info:eu-repo/semantics/openAccess
    Paraules clau: M-pro, afinitat d'unió, acoblament molecular M-pro, binding affinity, docking M-pro, afinidad de unión, acoplamiento molecular
    Confidencialitat: No
    Títol en la llengua original: Binding affinity and pose prediction for non-covalent M-pro SARS-CoV-2 inhibitors: An evaluation of most popular prediction methodologies
    Director del projecte: Pujadas Anguiano, Gerard
    Ensenyament(s): Biotecnologia
    Entitat: Universitat Rovira i Virgili (URV)
  • Paraules clau:

    Bioquímica i biotecnologia
    Biochemistry and biotechnology
    Bioquímica y biotecnología
    Bioquímica i biotecnologia
  • Documents:

  • Cerca a google

    Search to google scholar