Creation date in repository: 2023-02-10
Abstract: Disease diagnosis and personalized medicine based on metabolomics using changes in metabolite concentrations, are attracting the attention of more and more researchers. Nevertheless, compound identification remains a problem in most metabolomics studies based on mass spectrometry (MS), as the percentage of known MS molecular spectra is very low. We have proposed different methodologies to obtain the best prediction of the tandem mass spectra of molecules, comparing different types of neural networks. Also, we have obtained a very good prediction ability, achieving better results than the best in silico tool for the prediction of MS/MS spectra up to date.
Subject: Metabolòmica
Language: en
Work's codirector: Guimerà Manrique, Roger
Subject areas: Ingeniería química Chemical engineering Enginyeria química
Department: Enginyeria Química
Student: Pérez Ribera, María Isabel
Academic year: 2021-2022
Title in different languages: Predicción computacional de espectros de masas moleculares en tándem mediante algoritmos de aprendizaje profundo Computational prediction of molecular tandem mass spectra using deep learning algorithms Predicció computacional d'espectres de masses moleculars en tàndem per mitjà d'algoritmes d'aprenentatge profund
Work's public defense date: 2022-06-30
Access rights: info:eu-repo/semantics/openAccess
Keywords: redes neuronales, metabolómica, espectrometría de masas neural networks, metabolomics, mass spectrometry xarxes neuronals, metabolòmica, espectrometria de masses
Confidenciality: No
Title in original language: Computational prediction of molecular tandem mass spectra using deep learning algorithms
Project director: Sales Pardo, Marta
Education area(s): Enginyeria Biomèdica
Entity: Universitat Rovira i Virgili (URV)