Repositori institucional URV
Español Català English
TÍTOL:
Validation of a Deep Learning Algorithm for Diabetic Retinopathy - imarina:5938166

Autor/s de la URV:Puig Valls, Domènec Savi / Romero Aroca, Pedro / Valls Mateu, Aïda
Autor segons l'article:Romero-Aroca, Pedro; Verges-Puig, Raquel; de la Torre, Jordi; Valls, Aida; Relano-Barambio, Naiara; Puig, Domenec; Baget-Bernaldiz, Marc;
Adreça de correu electrònic de l'autor:aida.valls@urv.cat
pedro.romero@urv.cat
domenec.puig@urv.cat
Identificador de l'autor:0000-0003-3616-7809
0000-0002-7061-8987
0000-0002-0562-4205
Any de publicació de la revista:2020
Tipus de publicació:Journal Publications
ISSN:15305627
Referència de l'ítem segons les normes APA:Romero-Aroca, Pedro; Verges-Puig, Raquel; de la Torre, Jordi; Valls, Aida; Relano-Barambio, Naiara; Puig, Domenec; Baget-Bernaldiz, Marc; (2020). Validation of a Deep Learning Algorithm for Diabetic Retinopathy. Telemedicine And E-Health, 26(8), 1001-1009. DOI: 10.1089/tmj.2019.0137
Referència a l'article segons font original:Telemedicine And E-Health. 26 (8): 1001-1009
Resum:Background: To validate our deep learning algorithm (DLA) to read diabetic retinopathy (DR) retinographies. Introduction: Currently DR detection is made by retinography; due to its increasing diabetes mellitus incidence we need to find systems that help us to screen DR. Materials and Methods: The DLA was built and trained using 88,702 images from EyePACS, 1,748 from Messidor-2, and 19,230 from our own population. For validation a total of 38,339 retinographies from 17,669 patients (obtained from our DR screening databases) were read by a DLA and compared by four senior retina ophthalmologists for detecting any-DR and referable-DR. We determined the values of Cohen's weighted Kappa (CWK) index, sensitivity (S), specificity (SP), positive predictive value (PPV) and negative predictive value (NPV), and errors type I and II. Results: The results of the DLA to detect any-DR were: CWK = 0.886 +/- 0.004 (95% confidence interval [CI] 0.879-0.894), S = 0.967%, SP = 0.976%, PPV = 0.836%, and NPV = 0.996%. The error type I = 0.024, and the error type II = 0.004. Likewise, the referable-DR results were: CWK = 0.809 (95% CI 0.798-0.819), S = 0.998, SP = 0.968, PPV = 0.701, NPV = 0.928, error type I = 0.032, and error type II = 0.001. Discussion: Our DLA can be used as a high confidence diagnostic tool to help in DR screening, especially when it might be difficult for ophthalmologists or other professionals to identify. It can identify patients with any-DR and those that should be referred. Conclusions: The DLA can be valid to aid in screening of DR.
DOI de l'article:10.1089/tmj.2019.0137
Departament:Enginyeria Informàtica i Matemàtiques
URL Document de llicència:https://repositori.urv.cat/ca/proteccio-de-dades/
Àrees temàtiques:Saúde coletiva
Odontología
Medicine (miscellaneous)
Medicina iii
Medicina ii
Medicina i
Interdisciplinar
Health information management
Health informatics
Health care sciences & services
General medicine
Engenharias iv
Engenharias ii
Enfermagem
Educação física
Ciência da computação
Biotecnología
Astronomia / física
Arquitetura, urbanismo e design
Paraules clau:System
Screening of diabetic retinopathy
Prevalence
Guidelines
Family physicians
Diabetic retinopathy
Deep learning
Convolutional neural network
Agreement
diabetic retinopathy
deep learning
convolutional neural network
Entitat:Universitat Rovira i Virgili
Data d'alta del registre:2023-02-18
Cerca el teu registre a:


Informació

© 2011 Universitat Rovira i Virgili