Repositori institucional URV
Español Català English
TÍTOL:
Automatic modeling of socioeconomic drivers of energy consumption and pollution using Bayesian symbolic regression - imarina:9243292

Autor/s de la URV:Guimera Manrique, Roger / Sales Pardo, Marta
Autor segons l'article:Vazquez, Daniel; Guimera, Roger; Sales-Pardo, Marta; Guillen-Gosalbez, Gonzalo
Adreça de correu electrònic de l'autor:roger.guimera@urv.cat
marta.sales@urv.cat
Identificador de l'autor:0000-0002-3597-4310
0000-0002-8140-6525
Any de publicació de la revista:2022
Tipus de publicació:Journal Publications
Referència de l'ítem segons les normes APA:Vazquez, Daniel; Guimera, Roger; Sales-Pardo, Marta; Guillen-Gosalbez, Gonzalo (2022). Automatic modeling of socioeconomic drivers of energy consumption and pollution using Bayesian symbolic regression. Sustainable Production And Consumption, 30(), 596-607. DOI: 10.1016/j.spc.2021.12.025
Referència a l'article segons font original:Sustainable Production And Consumption. 30 596-607
Resum:Predicting countries’ energy consumption and pollution levels precisely from socioeconomic drivers will be essential to support sustainable policy-making in an effective manner. Current predictive models, like the widely used STIRPAT equation, are based on rigid mathematical expressions that assume constant elasticities. Using a Bayesian approach to symbolic regression, here we explore a vast amount of suitable mathematical expressions to model the link between energy-related impacts and socioeconomic drivers. We find closed-form analytical expressions that outperform the well-established STIRPAT equation and whose mathematical structure challenges the assumption of constant elasticities adopted in the literature. Our work unfolds new avenues to apply machine learning algorithms to derive analytical expressions from data in environmental studies, which could help find better models and solutions in energy-related problems.
DOI de l'article:10.1016/j.spc.2021.12.025
Enllaç font original:https://www.sciencedirect.com/science/article/pii/S2352550921003729?via%3Dihub
Versió de l'article dipositat:info:eu-repo/semantics/publishedVersion
Accès a la llicència d'ús:https://creativecommons.org/licenses/by/3.0/es/
Departament:Enginyeria Química
URL Document de llicència:https://repositori.urv.cat/ca/proteccio-de-dades/
Àrees temàtiques:Renewable energy, sustainability and the environment
Materiais
Interdisciplinar
Industrial and manufacturing engineering
Green & sustainable science & technology
Environmental studies
Environmental engineering
Environmental chemistry
Engenharias iii
Ciências ambientais
Administração pública e de empresas, ciências contábeis e turismo
Paraules clau:Symbolic regression
Surrogate model
Stochastic impacts by regression on population
Stirpat
Greenhouse gas (ghg) emissions
Eora environmentally extended multi-region input-output database
Affluence and technology (stirpat)
symbolic regression
stochastic impacts by regression on
population
input-output database
impact
greenhouse gas (ghg) emissions
footprint
eora environmentally extended multi-region
china
algorithm
affluence and technology (stirpat)
Entitat:Universitat Rovira i Virgili
Data d'alta del registre:2024-10-19
Cerca el teu registre a:

Fitxers disponibles
FitxerDescripcióFormat
DocumentPrincipalDocumentPrincipalapplication/pdf

Informació

© 2011 Universitat Rovira i Virgili