Repositori institucional URV
Español Català English
TÍTULO:
Automatic modeling of socioeconomic drivers of energy consumption and pollution using Bayesian symbolic regression - imarina:9243292

Autor/es de la URV:Guimera Manrique, Roger / Sales Pardo, Marta
Autor según el artículo:Vazquez, Daniel; Guimera, Roger; Sales-Pardo, Marta; Guillen-Gosalbez, Gonzalo
Direcció de correo del autor:roger.guimera@urv.cat
marta.sales@urv.cat
Identificador del autor:0000-0002-3597-4310
0000-0002-8140-6525
Año de publicación de la revista:2022
Tipo de publicación:Journal Publications
Referencia de l'ítem segons les normes APA:Vazquez, Daniel; Guimera, Roger; Sales-Pardo, Marta; Guillen-Gosalbez, Gonzalo (2022). Automatic modeling of socioeconomic drivers of energy consumption and pollution using Bayesian symbolic regression. Sustainable Production And Consumption, 30(), 596-607. DOI: 10.1016/j.spc.2021.12.025
Referencia al articulo segun fuente origial:Sustainable Production And Consumption. 30 596-607
Resumen:Predicting countries’ energy consumption and pollution levels precisely from socioeconomic drivers will be essential to support sustainable policy-making in an effective manner. Current predictive models, like the widely used STIRPAT equation, are based on rigid mathematical expressions that assume constant elasticities. Using a Bayesian approach to symbolic regression, here we explore a vast amount of suitable mathematical expressions to model the link between energy-related impacts and socioeconomic drivers. We find closed-form analytical expressions that outperform the well-established STIRPAT equation and whose mathematical structure challenges the assumption of constant elasticities adopted in the literature. Our work unfolds new avenues to apply machine learning algorithms to derive analytical expressions from data in environmental studies, which could help find better models and solutions in energy-related problems.
DOI del artículo:10.1016/j.spc.2021.12.025
Enlace a la fuente original:https://www.sciencedirect.com/science/article/pii/S2352550921003729?via%3Dihub
Versión del articulo depositado:info:eu-repo/semantics/publishedVersion
Acceso a la licencia de uso:https://creativecommons.org/licenses/by/3.0/es/
Departamento:Enginyeria Química
URL Documento de licencia:https://repositori.urv.cat/ca/proteccio-de-dades/
Áreas temáticas:Renewable energy, sustainability and the environment
Materiais
Interdisciplinar
Industrial and manufacturing engineering
Green & sustainable science & technology
Environmental studies
Environmental engineering
Environmental chemistry
Engenharias iii
Ciências ambientais
Administração pública e de empresas, ciências contábeis e turismo
Palabras clave:Symbolic regression
Surrogate model
Stochastic impacts by regression on population
Stirpat
Greenhouse gas (ghg) emissions
Eora environmentally extended multi-region input-output database
Affluence and technology (stirpat)
symbolic regression
stochastic impacts by regression on
population
input-output database
impact
greenhouse gas (ghg) emissions
footprint
eora environmentally extended multi-region
china
algorithm
affluence and technology (stirpat)
Entidad:Universitat Rovira i Virgili
Fecha de alta del registro:2024-10-19
Busca tu registro en:

Archivos desponibles
ArchivoDescripciónFormato
DocumentPrincipalDocumentPrincipalapplication/pdf

Información

© 2011 Universitat Rovira i Virgili