Articles producció científica> Història i Història de l'Art

Alteration by natural processes or anthropogenic manipulation? Assessing human skull breakage through machine learning algorithms

  • Dades identificatives

    Identificador: imarina:9387488
    Autors:
    Marginedas, FrancescMoclan, AbelCubas, MiriamGomez-Olivencia, AsierSaladie, PalmiraRodriguez-Hidalgo, Antonio
    Resum:
    Bone breakage is one of the most common features in the archaeological record. Fractures occur at different times and are classified as fresh or dry depending on the presence or absence of collagen in the bone. In the study of human remains, the timing of the occurrence of a fracture is of crucial importance as it can sometimes be linked to the cause of death. Types of skull breakage can be classified based on when they occurred, though not all fractures correspond to the expected features. This variability is added to the challenge of working with bones covered in consolidant, which obstructs the bone surface and hinders taphonomic analysis. This is the case of the Txispiri calotte, which was categorized as a skull cup in the early 20th century, though this classification was later rejected in the 1990s. In this study, we used statistics and machine learning (ML) to test the breakage characteristics of one set of skull fragments with fresh fractures, another set with dry fractures, and the Txispiri calotte. For this purpose, we considered the fracture type, trajectory, angles, cortical delamination and texture of each of the individual fractures. Our results show that the 13 fractures of the Txispiri calotte correspond to dry breakage and bear no relation to artificially produced skull cups. This study shows the potential of ML algorithms to classify fresh and dry fractures within the same specimen, a method that can be applied to other assemblages with similar characteristics.
  • Altres:

    Autor segons l'article: Marginedas, Francesc; Moclan, Abel; Cubas, Miriam; Gomez-Olivencia, Asier; Saladie, Palmira; Rodriguez-Hidalgo, Antonio
    Departament: Història i Història de l'Art
    Autor/s de la URV: Marginedas Miró, Francesc / Saladié Ballesté, Palmira
    Paraules clau: Blows Blunt head trauma Bone Calvaria Cannibalism Cave Discrimination Dry breakage Fall Forensic taphonomy Fractures Green breakage Patterns Perimortem Postmorte Postmortem Skull cups
    Resum: Bone breakage is one of the most common features in the archaeological record. Fractures occur at different times and are classified as fresh or dry depending on the presence or absence of collagen in the bone. In the study of human remains, the timing of the occurrence of a fracture is of crucial importance as it can sometimes be linked to the cause of death. Types of skull breakage can be classified based on when they occurred, though not all fractures correspond to the expected features. This variability is added to the challenge of working with bones covered in consolidant, which obstructs the bone surface and hinders taphonomic analysis. This is the case of the Txispiri calotte, which was categorized as a skull cup in the early 20th century, though this classification was later rejected in the 1990s. In this study, we used statistics and machine learning (ML) to test the breakage characteristics of one set of skull fragments with fresh fractures, another set with dry fractures, and the Txispiri calotte. For this purpose, we considered the fracture type, trajectory, angles, cortical delamination and texture of each of the individual fractures. Our results show that the 13 fractures of the Txispiri calotte correspond to dry breakage and bear no relation to artificially produced skull cups. This study shows the potential of ML algorithms to classify fresh and dry fractures within the same specimen, a method that can be applied to other assemblages with similar characteristics.
    Àrees temàtiques: Anthropology Antropología Antropologia / arqueologia Archaeology Archeology Archeology (arts and humanities) Ciencias humanas Ciencias sociales Geociências Geosciences, multidisciplinary Historia
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    Adreça de correu electrònic de l'autor: palmira.saladie@urv.cat francesc.marginedas@estudiants.urv.cat
    Identificador de l'autor: 0000-0002-1730-8461
    Data d'alta del registre: 2024-10-26
    Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
    Referència a l'article segons font original: Archaeological And Anthropological Sciences. 16 (11): 178-
    Referència de l'ítem segons les normes APA: Marginedas, Francesc; Moclan, Abel; Cubas, Miriam; Gomez-Olivencia, Asier; Saladie, Palmira; Rodriguez-Hidalgo, Antonio (2024). Alteration by natural processes or anthropogenic manipulation? Assessing human skull breakage through machine learning algorithms. Archaeological And Anthropological Sciences, 16(11), 178-. DOI: 10.1007/s12520-024-02083-5
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2024
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Anthropology,Archaeology,Archeology,Archeology (Arts and Humanities),Geosciences, Multidisciplinary
    Blows
    Blunt head trauma
    Bone
    Calvaria
    Cannibalism
    Cave
    Discrimination
    Dry breakage
    Fall
    Forensic taphonomy
    Fractures
    Green breakage
    Patterns
    Perimortem
    Postmorte
    Postmortem
    Skull cups
    Anthropology
    Antropología
    Antropologia / arqueologia
    Archaeology
    Archeology
    Archeology (arts and humanities)
    Ciencias humanas
    Ciencias sociales
    Geociências
    Geosciences, multidisciplinary
    Historia
  • Documents:

  • Cerca a google

    Search to google scholar