Articles producció científica> Enginyeria Informàtica i Matemàtiques

Closed formulae for the strong metric dimension of lexicographic product graphs

  • Datos identificativos

    Identificador: PC:1990
    Autores:
    Juan A. Rodríguez-VelázquezDorota KuziakIsmael G. Yero
    Resumen:
    Given a connected graph G, a vertex w ¿ V(G) strongly resolves two vertices u,v ¿ V(G) if there exists some shortest u - w path containing v or some shortest v - w path containing u. A set S of vertices is a strong metric generator for G if every pair of vertices of G is strongly resolved by some vertex of S. The smallest cardinality of a strong metric generator for G is called the strong metric dimension of G. In this paper we obtain several relationships between the strong metric dimension of the lexicographic product of graphs and the strong metric dimension of its factor graphs. © 2016, University of Zielona Gora.
  • Otros:

    Autor según el artículo: Juan A. Rodríguez-Velázquez; Dorota Kuziak; Ismael G. Yero
    Departamento: Enginyeria Informàtica i Matemàtiques
    Autor/es de la URV: RODRÍGUEZ VELÁZQUEZ, JUAN ALBERTO; Dorota Kuziak; Ismael G. Yero
    Palabras clave: Strong metric dimension Lexicographic product graphs Strong metric basis
    Resumen: Given a connected graph G, a vertex w ¿ V(G) strongly resolves two vertices u,v ¿ V(G) if there exists some shortest u - w path containing v or some shortest v - w path containing u. A set S of vertices is a strong metric generator for G if every pair of vertices of G is strongly resolved by some vertex of S. The smallest cardinality of a strong metric generator for G is called the strong metric dimension of G. In this paper we obtain several relationships between the strong metric dimension of the lexicographic product of graphs and the strong metric dimension of its factor graphs. © 2016, University of Zielona Gora.
    Grupo de investigación: Matemática Discreta
    Áreas temáticas: Enginyeria informàtica Ingeniería informática Computer engineering
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 1234-3099
    Identificador del autor: 0000-0002-9082-7647; N/A; 0000-0002-1619-1572
    Fecha de alta del registro: 2016-12-01
    Página final: 1064
    Volumen de revista: 36
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2016
    Página inicial: 1051
    Tipo de publicación: Article Artículo Article
  • Palabras clave:

    Grafs, Teoria de
    Strong metric dimension
    Lexicographic product graphs
    Strong metric basis
    Enginyeria informàtica
    Ingeniería informática
    Computer engineering
    1234-3099
  • Documentos:

  • Cerca a google

    Search to google scholar