Autor según el artículo: Bamiloshin, Michael; Ben-Efraim, Aner; Farras, Oriol; Padro, Carles;
Departamento: Enginyeria Informàtica i Matemàtiques
Autor/es de la URV: Bamiloshin, Michael Olugbenga / Farràs Ventura, Oriol
Código de proyecto: Grant agreement No. 713679
Palabras clave: Secret sharing Schemes Networks Matroid representation Linear programming Information inequalities Inequalities Common information Bounds
Resumen: Linear information and rank inequalities as, for instance, Ingleton inequality, are useful tools in information theory and matroid theory. Even though many such inequalities have been found, it seems that most of them remain undiscovered. Improved results have been obtained in recent works by using the properties from which they are derived instead of the inequalities themselves. We apply here this strategy to the classification of matroids according to their representations and to the search for bounds on secret sharing for matroid ports.
Áreas temáticas: Theoretical computer science Mathematics, applied Matemática / probabilidade e estatística Engenharias iv Engenharias iii Discrete mathematics and combinatorics Computer science, theory & methods Computer science applications Ciência da computação Astronomia / física Applied mathematics
Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
Direcció de correo del autor: michaelolugbenga.bamiloshin@urv.cat oriol.farras@urv.cat
Identificador del autor: 0000-0002-4076-3833 0000-0002-7495-5980
Fecha de alta del registro: 2024-07-27
Versión del articulo depositado: info:eu-repo/semantics/acceptedVersion
Programa de financiación: Martí i Franquès COFUND Doctoral Programme
URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
Referencia al articulo segun fuente origial: Designs Codes And Cryptography. 89 (1): 143-166
Referencia de l'ítem segons les normes APA: Bamiloshin, Michael; Ben-Efraim, Aner; Farras, Oriol; Padro, Carles; (2021). Common information, matroid representation, and secret sharing for matroid ports. Designs Codes And Cryptography, 89(1), 143-166. DOI: 10.1007/s10623-020-00811-1
Acrónimo: MFP
Entidad: Universitat Rovira i Virgili
Año de publicación de la revista: 2021
Acción del progama de financiación: Marie Skłodowska-Curie Actions - European Union's Horizon 2020 research and innovation programme
Tipo de publicación: Journal Publications