Articles producció científica> Enginyeria Informàtica i Matemàtiques

A CONSTRUCTIVE CHARACTERIZATION OF VERTEX COVER ROMAN TREES

  • Datos identificativos

    Identificador: imarina:9093098
    Autores:
    Cabrera Martinez, AbelKuziak, DorotaYero, Ismael G.
    Resumen:
    A Roman dominating function on a graph G = (V (G), E (G)) is a function f : V (G) -> {0, 1, 2} satisfying the condition that every vertex u for which f (u) = 0 is adjacent to at least one vertex v for which f (v) = 2. The Roman dominating function f is an outer-independent Roman dominating function on G if the set of vertices labeled with zero under f is an independent set. The outer-independent Roman domination number gamma(oiR) (G) is the minimum weight w(f ) = Sigma(v is an element of V), ((G)) f(v) of any outer-independent Roman dominating function f of G. A vertex cover of a graph G is a set of vertices that covers all the edges of G. The minimum cardinality of a vertex cover is denoted by alpha(G). A graph G is a vertex cover Roman graph if gamma(oiR) (G) = 2 alpha(G). A constructive characterization of the vertex cover Roman trees is given in this article.
  • Otros:

    Autor según el artículo: Cabrera Martinez, Abel; Kuziak, Dorota; Yero, Ismael G.;
    Departamento: Enginyeria Informàtica i Matemàtiques
    Autor/es de la URV: CABRERA MARTÍNEZ, ABEL / GONZÁLEZ YERO, ISMAEL
    Palabras clave: Vertex independence Vertex cover Trees Roman domination Outer-independent roman domination Domination
    Resumen: A Roman dominating function on a graph G = (V (G), E (G)) is a function f : V (G) -> {0, 1, 2} satisfying the condition that every vertex u for which f (u) = 0 is adjacent to at least one vertex v for which f (v) = 2. The Roman dominating function f is an outer-independent Roman dominating function on G if the set of vertices labeled with zero under f is an independent set. The outer-independent Roman domination number gamma(oiR) (G) is the minimum weight w(f ) = Sigma(v is an element of V), ((G)) f(v) of any outer-independent Roman dominating function f of G. A vertex cover of a graph G is a set of vertices that covers all the edges of G. The minimum cardinality of a vertex cover is denoted by alpha(G). A graph G is a vertex cover Roman graph if gamma(oiR) (G) = 2 alpha(G). A constructive characterization of the vertex cover Roman trees is given in this article.
    Áreas temáticas: Mathematics Matemática / probabilidade e estatística Discrete mathematics and combinatorics Ciência da computação Applied mathematics
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 1234-3099
    Direcció de correo del autor: abel.cabrera@urv.cat
    Identificador del autor: 0000-0003-2806-4842
    Página final: 283
    Fecha de alta del registro: 2021-10-10
    Volumen de revista: 41
    Versión del articulo depositado: info:eu-repo/semantics/publishedVersion
    Enlace a la fuente original: https://www.dmgt.uz.zgora.pl/publish/bbl_view_pdf.php?ID=42024
    Referencia al articulo segun fuente origial: Discussiones Mathematicae Graph Theory. 41 (1): 267-283
    Referencia de l'ítem segons les normes APA: Cabrera Martinez, Abel; Kuziak, Dorota; Yero, Ismael G.; (2021). A CONSTRUCTIVE CHARACTERIZATION OF VERTEX COVER ROMAN TREES. Discussiones Mathematicae Graph Theory, 41(1), 267-283. DOI: 10.7151/dmgt.2179
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    DOI del artículo: 10.7151/dmgt.2179
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2021
    Página inicial: 267
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Applied Mathematics,Discrete Mathematics and Combinatorics,Mathematics
    Vertex independence
    Vertex cover
    Trees
    Roman domination
    Outer-independent roman domination
    Domination
    Mathematics
    Matemática / probabilidade e estatística
    Discrete mathematics and combinatorics
    Ciência da computação
    Applied mathematics
  • Documentos:

  • Cerca a google

    Search to google scholar