Articles producció científica> Enginyeria Informàtica i Matemàtiques

Dynamics of the Secant map near infinity

  • Datos identificativos

    Identificador: imarina:9247853
    Autores:
    Garijo, AntonioJarque, Xavier
    Resumen:
    We investigate the root finding algorithm given by the Secant method applied to a real polynomial p of degree k as a discrete dynamical system defined on R-2. We extend the Secant map to the real projective plane RP2. The line at infinity l(infinity)is invariant, and there is one (if k is odd) or two (if k is even) fixed points at l(infinity ).We show that these are of saddle type, and this allows us to better understand the dynamics of the Secant map near infinity.
  • Otros:

    Autor según el artículo: Garijo, Antonio; Jarque, Xavier;
    Departamento: Enginyeria Informàtica i Matemàtiques
    Autor/es de la URV: Garijo Real, Antonio
    Código de proyecto: PID2020-118281GB-C33
    Palabras clave: Connectivity Iteration Julia sets Root finding algorithms Secant method
    Resumen: We investigate the root finding algorithm given by the Secant method applied to a real polynomial p of degree k as a discrete dynamical system defined on R-2. We extend the Secant map to the real projective plane RP2. The line at infinity l(infinity)is invariant, and there is one (if k is odd) or two (if k is even) fixed points at l(infinity ).We show that these are of saddle type, and this allows us to better understand the dynamics of the Secant map near infinity.
    Áreas temáticas: Algebra and number theory Analysis Applied mathematics Astronomia / física Interdisciplinar Matemática / probabilidade e estatística Mathematics, applied
    Acceso a la licencia de uso: https://creativecommons.org/licenses/by/3.0/es/
    Direcció de correo del autor: antonio.garijo@urv.cat
    Identificador del autor: 0000-0002-1503-7514
    Fecha de alta del registro: 2024-08-03
    Versión del articulo depositado: info:eu-repo/semantics/acceptedVersion
    Enlace a la fuente original: https://www.tandfonline.com/doi/abs/10.1080/10236198.2022.2044476?journalCode=gdea20
    Programa de financiación: Herramientas para el análisis de diagramas de bifurcación en sistemas dinámicos
    Referencia al articulo segun fuente origial: Journal Of Difference Equations And Applications. 28 (10): 1334-1347
    Referencia de l'ítem segons les normes APA: Garijo, Antonio; Jarque, Xavier; (2022). Dynamics of the Secant map near infinity. Journal Of Difference Equations And Applications, 28(10), 1334-1347. DOI: 10.1080/10236198.2022.2044476
    URL Documento de licencia: https://repositori.urv.cat/ca/proteccio-de-dades/
    Acrónimo: ATBiD
    DOI del artículo: 10.1080/10236198.2022.2044476
    Entidad: Universitat Rovira i Virgili
    Año de publicación de la revista: 2022
    Acción del progama de financiación: Proyectos I+D Generación de Conocimiento
    Tipo de publicación: Journal Publications
  • Palabras clave:

    Algebra and Number Theory,Analysis,Applied Mathematics,Mathematics, Applied
    Connectivity
    Iteration
    Julia sets
    Root finding algorithms
    Secant method
    Algebra and number theory
    Analysis
    Applied mathematics
    Astronomia / física
    Interdisciplinar
    Matemática / probabilidade e estatística
    Mathematics, applied
  • Documentos:

  • Cerca a google

    Search to google scholar